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Abstract- Solar energy data was collected from two sites in western Michigan, USA that are not homogeneous with respect to 
location and solar panels used.  Data from one site was collected from August 1, 2009 through July 31, 2019 and the second 
site from July 12, 2017 through July 31, 2019 and summarized statistically.  The average monthly solar energy was higher 
during the summer and lower during the winter. The variation is higher during the winter and lower during the summer.  The 
annual cycle of average monthly solar energy, as well as the variation, was modeled using periodic regression equations com-
prised of intercept, sine, and cosine terms as well as an additive term for the difference between the two sites.  Model parame-
ters were estimated from all collected data as well as from only the 2017 through 2019 data.  All estimated values are statisti-
cally significant and consistent in magnitude and sign between the two energy equations. The adjusted coefficients of estimates 
exceeded 80%.  It was concluded that the average monthly solar energy pattern at each site was the same but with different 
magnitudes and not changing in time.  Thus, the model could be applied to all sites in the west Michigan area, now and in the 
future.  For the variation in average monthly solar energy models, the adjusted coefficient of estimation was slightly above 
75%.  While all parameter values were statistically significant, they were different in magnitude and sign indicating the possi-
bility of a change in variation over time. 

Keywords- Solar energy, periodic regression, multiple sites. 

1. Introduction 

Solar radiation is a primary renewable energy source. 
The radiation is often harvested using photovoltaic (PV) 
panels to generate electrical energy.  The amount of solar 
radiation and thus electrical energy varies with the month of 
the year with more available in the summer months and less 
in the winter months.  Furthermore, the day-to-day variation 
is higher in the winter months and less in the summer 
months.  Thus, the design of a collection of solar panels, a 
solar garden, depends on understanding the annual cycle of 
available solar energy.  Mathematical models relating solar 
energy, both quantity and variation, to the time of the year 
are helpful in this regard.  In general terms, such models are 
of the periodic type that is a curve that relates a variable 
(solar energy or variation) to time (month) and is repeated at 
fixed time intervals[1].  Furthermore, such models are de-
scriptive and are used to help reveal relationships in the ex-
isting data to support decision making[2]. 

Periodic regression is one approach for constructing 
such mathematical models.  The periodic regression method 

and its usefulness in climatology applications, such as solar 
radiation, are discussed by Bliss[3].  Čobanović, Lozanov-
Crvenković and Nikolić-Đorić[4] describe the periodic re-
gression method as well as including an application to mod-
eling daily maximum UV levels at the University of Novi 
Sad. 

The periodic nature of physical phenomena is modeled 
using the sine and cosine trigonometric functions.  The pa-
rameters of these functions are the months of the year ex-
pressed as radians.  Fig. 1 shows the periodic behavior of the 
sine and cosine function as a function of the month of the 
year.  Thus, in the periodic regression model, solar energy is 
the dependent variable and the sine and cosine of the month 
of the year are independent variables. 

In this study, data was collected from solar photovoltaic 
(PV) panels installed at two sites: 

1. Atop the Keller Engineering Laboratories Building 
(KEB) of Grand Valley State University in Grand 
Rapids, Michigan, USA from August 1, 2009  
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Figure 1. Sine and cosine function by month of the year. 

through July 31, 2019.  KEB is located at coordinates 
(latitude, longitude) = (42.9637, -85.6700). 

2. Atop a trailer parked at the Hastings Township Of-
fice (HTO), Hastings Township, Michigan, USA 
from July 12, 2017 through July 31, 2019.  HTO is 
located at coordinates (latitude, longitude) = 
(42.6292,  -85.2428). 

Note that data were collected at both sites from July 12, 2017 
through July 31, 2019, which will be referred to as the over-
lapping period.  

The two sites are not homogeneous. They are 51km 
apart.  At HTO, the solar power generation system consists 
of eight SS250x type Sonali-manufactured PV solar panels 
mounted over the top of a semi-truck platform, at the angle 
that maximizes exposure to sunlight.  The rating of this PV 
system is 250W, 31.32V,7.98A[5].  At KEB, there are 12 
solar PV panels manufactured by United Solar Ovonic LLC, 
model ES 124 with ratings of 124W, 30V, and 4.1A. They 
are mounted on the roof of the building at a fixed angle of 
inclination of approximately 44 degrees.  

Periodic regression models for solar energy encompass-
ing both KEB and HTO are presented.  Model parameter 
estimation is described and results are discussed.  Conclu-
sions are given.  First, previous work concerning modeling 
solar energy, particularly using regression, is reviewed. 

2. Background 

Yesilbudak, Colak and Bayindir[2] provide a discussion 
and comprehensive review of solar irradiance and solar pow-
er modeling with emphasis on forecasting models.  Four 
different time horizons and their purposes used for solar 
forecasting are defined and described.  The review found that 
most solar power forecasting models are applied to the first 
three time horizons of less than one day: less than 15 
minutes, 15 minutes to 1 hour and 1 hour to 1 day for pur-
poses including load balancing, reserve capacity planning, 
and load following. 

By contrast, this work concerns descriptive modeling 
with an annual time horizon based on data from multiple 
years.  Thus, the following literature review emphasizes 
descriptive models where time is an independent variable 

while also providing a sampling of work describing various 
types of models used for both descriptive modeling and fore-
casting. 

Patniak[6] presents a time-based descriptive analysis of 
power generation at a utility scale solar garden.  For individ-
ual days, the ideal or maximum power generated by the facil-
ity is compared to the actual power generated minute by 
minute.  Dips, significant deviations downward from the 
ideal power generation, are collected and analyzed for fre-
quency of occurrence, maximum deviation, and average 
deviation. 

Many studies have applied regression techniques for de-
scriptive modeling of solar energy generation and related 
quantities.  Typical of these, Goia and Gustavsen[7] use 
linear regression to model the energy generated by a rooftop 
solar plant.  Descriptive models are constructed independent-
ly for each of six months with the coefficient of determina-
tion values, the percent of variation in the data explained by 
the model, ranging from 80% to 90%.  The analysis provides 
an overview of system performance to aid in understanding 
the power generated given that the inverters were undersized.   

Ianetz et al.[8] compare the potential for solar energy 
generation at three different sites by statistical analysis of 
solar radiation data.  Distribution function fitting is employed 
along with computation of monthly and annual averages and 
coefficients of variation.  This descriptive modeling was used 
to understand and compare the solar irradiation among the 
three sites.  

Kicsiny[9] uses multiple linear regression descriptive 
models to express the temperature of the fluid leaving a solar 
collector as a function of the physical properties of the col-
lector, the solar irradiance on the collector surface, and time.  
These models are shown to perform better than an ordinary 
differential equation models based in physics principles with 
respect to predicting the temperature of the fluid leaving the 
collector. 

Kumar, Nagabushanam, and Jayakumar[10] present a 
time-series approach based in moving averages (MA) to 
model power generation from a 95kW solar PV plant in-
stalled at the Karunya Institute of Technology and Sciences.  
Data were collected at 15 minutes intervals for 10 days.  The 
models were successfully employed to forecast power gener-
ation for one day in the future. 

Belmahdi, Louzazni, and El Bouardi[11] discuss the de-
velopment of models to forecast monthly mean daily global 
solar radiation for up to three months in the future.  Auto-
regressive moving average (ARMA) and autoregressive 
integrated moving average models (ARIMA) are used.  The 
latter provide the best results for forecasting based on the 
AIC and BIC goodness of fit criteria.     

Dahmani et al.[12] present the use of an artificial neural 
network model to predict the solar radiation on a tilted sur-
face from only the measured horizontal global radiation.  
This is significant since solar panels are almost always in-
stalled tilted but only horizontal radiation is usually meas-
ured.  The model was deemed valid and useful as the root 
mean square error is 8.81%. 
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Many studies have used linear regression analysis to 
predict solar irradiance as a function of astrological and met-
rological quantities.  Typical of these is the study by Paules-
cu and Blaga[13].  Eight new models are proposed and vali-
dated.   In the same vein, Keshtegar et al.[14] compare re-
gression models for solar radiation using four different meth-
ods.  Finally, Li et al.[15] used regression for predicting 
hourly global solar radiation on a horizontal surface. 

Recent work has sought to improve short term forecast-
ing.  Ueshima et al.[16] report on a method for improving 
weekly forecasts of solar radiation statistically from a numer-
ical weather prediction model by considering historical fore-
casting error occurrences.  Colak, Yesilbudak and Bayin-
dir[17] show that a grey wolf optimizer-based multilayer 
perceptron model is appropriate to predict efficiently daily 
total horizontal solar radiation.  Air temperature, relative 
humidity and diffuse horizontal solar radiation parameters 
are evaluated.  Al-Hajj, Assi, and Fouad[18] create a one-day 
solar radiation forecast using a weighted average of a neural 
network model and a support vector regressors model. Using 
one year of meteorological data, the combined model was 
shown to produce superior results versus either model alone.  

There is recent work on descriptive modeling as well.  
Yesilbudak et al.[19] use three different curve fitting meth-
ods: Fourier, sum of sines and smoothing spline to model 
global solar radiation and air temperature parameters at 10-
min intervals over a month. Based on the coefficient of de-
termination and the root mean squared error, the smoothing 
spline model produced the best results.  Bosman and Dar-
ling[20] demonstrate the need for better estimation of the 
influence of snow on solar panels with respect to energy 
generation. In addition, these authors propose a new method 
for better understanding the return on investment for solar 
energy systems located in snowy environments. 

However, it appears that none of the published studies 
have used the periodic regression technique to develop de-
scriptive models of the annual cycle of solar energy genera-
tion by a solar PV panel system. 

3. Methods 

First modeling with periodic regression will be dis-
cussed.  Then additional statistical methods used to analyze 
the solar energy data will be presented. 

The general periodic regression equation is given in 
equation 1.  An additional term to model location is added in 
equation 2. 

Y = B0 + B1*sine(2πt) + B2*cosine(2πt) + Error (1) 

Y = B0 + B1*sine(2πt) + B2*cosine(2πt) + B3*I + Error   (2) 

The symbols used in these equations are defined in Ta-
ble 1. 

Table 1. Symbol Definitions 

Symbol Definition 

Y Dependent variable: quantity of or variation in 
solar energy 

T Time parameter: month / 12  

I Indicator variable representing location: 

0 for KEB 

1 for HTO 

B0 y intercept 

B1, B2 Coefficients of the sine and cosine terms 

B3 Coefficient of the location indicator variable 

 

The time parameter refers to a month of the year. For 
example, July is the seventh month of the year so the time 
parameter for July is 7/12.  The sine and cosine terms work 
together to model the periodicity. The last term indicates that 
the periodic behavior does not depend on location.  The dif-
ference in monthly solar energy or variation in month solar 
energy is in the difference in magnitude, B3. 

Methods for estimating the parameter values given in 
equations 1 and 2 are described by Bloomfield[21] as is the 
more general form of equation 1. 

The amount of solar energy generated at each site is ob-
served and reported each day by automated equipment.  All 
observations with a value of zero are considered missing and 
removed from the data set before analysis.  For the KEB data 
set, there were 170 such values, 4.7%, and for the HTO data 
set 4 values, 0.55%.  For each month, the average, standard 
deviation and coefficient of variation (CV) are computed 
from the daily observations.  The coefficient of variation is 
the ratio: standard deviation / average.  In addition, the aver-
age over all years for each month, January through December 
is computed for each location.   

The coefficient of determination R2 is used as the prima-
ry measure of the goodness-of-fit of the periodic regression 
equations.  It is the percent of variation in the data that is 
explained by a regression equation and thus ranges from 0 to 
1.  The closer the value of R2 is to 1 the better the fit of the 
regression equation to the data. 

In addition, multiple plots are used to aid in the assess-
ment of model goodness of fit: 

1. The monthly solar energy averages (kWh) or CV’s 
calculated from the collected data are plotted 
against those generated by the regression equation.  
A good fit is indicated if this plot is approximately a 
45-degree line, which occurs when each calculated 
value is approximately the same as the correspond-
ing observed value.  

2. The difference between the calculated monthly solar 
energy average or CV and the corresponding value 
generated by the regression equation is known as 
the residual.  Regression analysis assumes that the 
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residuals are normally distributed with mean 0 and a 
constant variance.  

a. A plot of the residuals versus the values 
predicted by the regression equation should 
show random scatter around 0 with width 
about the same above and below 0.  

b. The normal probability plot of the residuals 
should be a straight line. 

c. The histogram of the residuals should be 
approximately bell-shaped. 

The normal probability plot is a type of quantile-quantile 
or Q-Q plot.  Percentile is another word for quantile.  The 
residual values are sorted from smallest to largest and plotted 
on the y-axis.  The corresponding x-axis value for the ith 
residual in sorted order is the percent point of the standard 
normal distribution given by the value P(Z ≤ i/n), where n is 
the total number of residuals.  If the residuals are normally 
distributed, the plot should show a straight line.  Stine[22] 
provides a brief explanation of the normal probability plot. 

Model parameters are estimated and the goodness of fit 
measures are computed using SAS, the REG procedure. 

4. Results 

The monthly averages and coefficients of variations of 
the solar energy generated for the overlapping period are 
shown by bar graph in Fig. 2 and Fig. 3. 

 
Figure 2.  Monthly average energy (kWh) generation at 
HTO and KEB for the overlapping period. 

 
Figure 3.  Monthly coefficients of variation at HTO and 
KEB for the overlapping period. 

The parameters of the regression model were estimated 
from the monthly averages for KEB and HTO computed 
using all available data, 24 observations total.  The results are 
shown in equation 3 with parameter values expressed to three 
significant digits, the precision of the data. 

Predicted Average Energy (kWh) =    

4.01-0.838*sine(2πt)-2.86*cosine(2πt)+1.59*I    (3) 

All regression parameter values are statistically signifi-
cant (a = 0.0135, at most) as shown in Table 2.  Note that the 
P-value is the probability that the true parameter value is 
zero.  The value of a is the chosen acceptable probability 
that the true parameter value is zero, which is typically 5%.  
In this case, the P-values can be interpreted as consistent 
with choosing an a value as low as 0.0135. 

Table 2. Analysis of parameter estimates – all data average 
monthly energy (kWh). 

Vari-
able 

 
Esti-
mate 

Stand
ard 

Error 

Test 
Statis-

tic 
P-

value 
95% Confi-
dence Limits 

Inter-
cept 
(b0) 

4.01 0.310 13.0 <.0001 3.36 4.65 

Sine 
term 
(b1) 

-0.838 0.310 -2.71 0.0135 -1.48 -0.192 

Cosine 
term 
(b2) 

-2.86 0.310 -9.24 <.0001 -3.51 -2.21 

Loca-
tion 
(b3) 

1.59 0.438 3.62 0.0017 0.673 2.50 

 

The results of the periodic regression are shown graph-
ically in Fig. 4 with the monthly averages displayed and the 
regression equation superimposed by location.  

 
Figure 4.  Periodic regression results – all data average 
monthly energy (kWh). 

Alternatively, the parameters of the periodic regression 
model can be estimated from the data from the overlapping 
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period only, 50 monthly data points.  Results are shown in 
equation 4. 

Predicted Average Energy (kWh) =    

3.96-0.747*sine(2πt)–2.97*cosine(2πt)+1.60*I    (4) 

All regression parameter values are statistically signifi-
cant (a = 0.0008, at most) as shown in Table 3. 

Table 3. Analysis of parameter estimates – overlapping peri-
od average monthly energy (kWh). 

Vari-
able 

 
Esti-
mate 

Stand
ard 

Error 

Test 
Statis-

tics 
P-

value 
95% Confi-
dence Limits 

Inter-
cept 
(b0) 

3.96 0.205 19.3 <.0001 3.54 4.37 

Sine 
term 
(b1) 

-0.747 0.208 -3.60 0.0008 -1.16 -0.329 

Cosine 
term 
(b2) 

-2.97 0.204 -14.6 <.0001 -3.38 -2.56 

Loca-
tion 
(b3) 

1.60 0.290 5.52 <.0001 1.02 2.19 

 

The results of the periodic regression are shown graph-
ically in Figure 5 with the 25-monthly averages displayed 
and the regression equation superimposed by location. 

 
Figure 5.  Periodic regression results – overlapping period 
average monthly energy (kWh). 

The adjusted coefficient of determination R2 for the 
model estimated with all data is 81.7% and for the model 
estimated with data from the overlapping period is 84.0%.   
The goodness of fit plots regarding the average monthly 
energy using all data are shown in Fig. 6 and for the overlap-
ping period data in Fig. 7.   The plots are as follows moving 
clockwise from the upper left. 

1. Monthly energy averages (kWh) versus those gener-
ated by the regression equation.   

2. Residuals versus predicted values. 

3. Histogram of the residuals. 

4. Normal probability plot of the residuals. 

 

 
Figure 6. Goodness-of-fit diagnostic plots -- all data average 
monthly energy (kWh)  

 

 
Figure 7. Goodness-of-fit diagnostic plots --  overlapping 
period average monthly energy (kWh) 
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Figure 7. Concluded 

The periodicity in the coefficient of variation (CV) can 
be modeled using the same approach.  The parameters of 
equation 5 are estimated using all data and the parameters of 
equation 6 are estimated using the data from the overlapping 
period. 

Predicted CV = 0.238 + 0.0825*sine(2πt) +   
0.163*cosine(2πt) + 0.192*I         (5) 

Predicted CV = 0.747 + 0.177*sine(2πt)   +   
0.399*cosine(2πt)  - 0.123*I         (6) 

All regression parameter values are statistically signifi-
cant (a = 0.0201, at most) as shown in Tables 4 and 5. 

Table 4. Analysis of parameter estimates – coefficients of 
variation (CV) computed from all data  

Vari-
able 

 
Esti-
mate 

Stand
ard 

Error 

Test 
Sta-

tistics 
P-

value 
95% Confi-
dence Limits 

Inter-
cept 
(b0) 

0.237 0.0255 9.33 <.0001 0.184 0.290 

Sine 
term 
(b1) 

0.0825 0.0254 3.24 0.0041 0.029 0.135 

Co-
sine 
term 
(b2) 

0.163 0.0255 6.40 <.0001 0.110 0.216 

Loca-
tion 
(b3) 

0.192 0.0360 5.34 <.0001 0.117 0.267 

 

Table 5. Analysis of parameter estimates – overlapping peri-
od coefficients of variation (CV) 

Vari-
able 

 
Esti-
mate 

Stand
ard 

Error 

Test 
Sta-

tistic 
P-

value 
95% Confi-
dence Limits 

Inter-
cept 
(b0) 

0.747 0.0363 20.6 <.0001 0.674 0.820 

Sine 
term 
(b1) 

0.177 0.0367 4.84 <.0001 0.104 0.251 

Cosine 
term 
(b2) 

0.399 0.0360 11.1 <.0001 0.327 0.472 

Loca-
tion 
(b3) 

-0.123 0.0513 -2.41 0.0201 -0.227 -0.020 

 

The results of the periodic regression are shown graph-
ically in Fig. 8 and Fig. 9 with the monthly coefficients of 
variation (CV) displayed and the regression equations super-
imposed by location.  The adjusted coefficient of determina-
tion R2 for the model estimated with all data is 77.0% and 
for the model estimated with data from the overlapping peri-
od is 75.8%.  The goodness of fit plots regarding the average 
monthly energy using all data are shown in Fig. 10 and for 
the overlapping period data in Fig. 11.    
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Figure 8.  Periodic regression results – coefficients of varia-
tion(CV)  computed from all data. 

 
Figure 9.  Periodic regression results – coefficients of varia-
tion (CV) for the overlapping period. 

 

 
Figure 10. Goodness-of-fit diagnostic plots -- all data coeffi-
cient of variation  

 

 
Figure 11. Goodness-of-fit diagnostic plots --  overlapping 
period for the coefficient of variation  
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Findings have to do with monthly average solar energy 
generation at HTO and KEB as well as the variation in the 
monthly average.  The annual cycle as well as the magnitude 
are discussed.  Potential changes in each over time are ad-
dressed. 

Basic statistical summarization of the solar energy data 
collected at HTO and KEB shows that the average monthly 
energy generation is highest in the summer, less in the spring 
and fall, and lowest in the winter.  Variation follows the 
opposite pattern: highest in the winter and lowest in the 
summer.  The average monthly energy is always higher at 
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HTO than KEB and the within month variation, as measured 
by CV, is lower at HTO than KEB. 

Periodic regression has been shown to effectively model 
the annual cycle of solar energy collected by PV panels. All 
parameter estimates of the periodic regression equations are 
statistically significant (a = 0.0135, at most).  The sine and 
cosine terms added together represent the annual cycle with 
the location indicator term adjusting for the difference in the 
magnitude of energy generated between KEB and HTO.   

Thus, the average monthly solar energy generated at two 
sites in the same region can be modeled with the same peri-
odic regression equation with the difference in the magnitude 
modeled by an additive constant.  Since this estimated pa-
rameter value is statistically significant (a = 0.0017, at most) 
and positive, it can be concluded that the HTO site generates 
more energy than the KEB site.  However, the annual solar 
energy cycle at each site is the same.  This leads to the im-
portant conclusion that the annual cycle in average monthly 
solar energy at any site in the same region, West Michigan, 
would be the same.  

The adjusted coefficient of determination, R2, is over 
80% for each energy model, which is consistent with the R2 
values obtained by Goia and Gustavsen[7], 80% to 90%, as 
well as Čobanović, Lozanov-Crvenković and Nikolić-
Đorić[3], 81%.   The model with parameter values estimated 
from all the data is almost identical to the model with param-
eter values estimated from the overlapping period only.  All 
model parameter values are statistically significant and of the 
same magnitude and sign.  In addition, the largest difference 
in value is for the sine term, about 11%.  Thus, it can be 
concluded that the annual solar energy cycle is not changing 
in time.  Thus, the model can be used for future planning. 

In the same way, the annual cycle of variation can be 
modeled using periodic regression.  All parameter values are 
statistically significant (a = 0.0201, at most).  Again, the 
difference in the magnitude of the variation between KEB 
and HTO can be modeled using an additive term with a sta-
tistically significant coefficient (a = 0.0201, at most).    This 
leads to the conclusion that the annual cycle in the variation 
in average monthly solar energy at any cite in the West 
Michigan region would be the same. 

The adjusted coefficient of variation for each model is 
slightly above 75%, an acceptable fit for physical phenome-
na.  However, the estimated parameter values for the two 
models vary noticeably.  The magnitudes of coefficients for 
the intercept, sine, and cosine term are noticeably greater for 
the overlapping period model.  The sign of the location term 
is different between the two models.  This indicates a possi-
ble change in average monthly solar energy variation over 
time. 

The graphs in Fig. 6, 7, 10 and 11 reinforce that the 
models fit the data well.  The residuals appear to be normally 
distributed as seen in the normal probability plots and the 
histograms.  Note that the residuals for the overlapping peri-
od models fit tighter to the 45-degree line in the normal 
probability plot than the residuals for the models with all data 
indicating a better fit to the data for the former.  The residu-

als randomly scatter on either side of zero within the same 
distance from zero except for one positive outlier.  The plot 
of the actual data versus the estimates from the regression 
equation follow a 45-degree line well. 

In summary, the primary findings are as follows: 

1. Average monthly energy generation is highest in the 
summer and lowest in the winter with variation fol-
lowing the opposite pattern.   

2. Periodic regression effectively models the annual 
cycle of solar energy, both the monthly average and 
the variation in the monthly average. 

3. The average monthly solar energy generated at two 
sites in the West Michigan region can be modeled 
with the same periodic regression equation with the 
difference in the magnitude modeled by an additive 
constant.  This is also true for the variation in the 
average monthly solar energy.   

4. By inference based on the periodic regression mod-
eling results, the annual cycle in average monthly 
solar energy at any site in the West Michigan region 
is the same. This is also true for the annual cycle of 
the variation in average monthly solar energy.   

5. The annual cycle in average monthly solar energy in 
West Michigan is not changing in time.  Thus, the 
periodic regression model can be used for future 
planning. 

6.  A potential change in the magnitude of the varia-
tion in average monthly solar energy over time was 
identified. 
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