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Abstract- the paper presents an efficient electric drive - DC scheme with an online error driven control strategies. The hybrid 

Photovoltaic (PV)-Fuel cell (FC)-Diesel-Battery powered four-wheel PMDC Electric Vehicle (EV) drive scheme utilizes 

number of dynamic self regulating control schemes. The proposed regulation schemes include Proportional plus Integral plus 

Derivative modified control strategies and a dynamic variable structure sliding mode control scheme which are dynamically 

self regulated using soft computing Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) random search 

techniques. The PSO and GA optimal gain search and optimization techniques ensure control gains dynamical adjusting and 

online tuning under all operating conditions and electric vehicle nonlinearities. The Proposed tri loop dynamic error driven self 

tuned  controllers are also used to ensure energy efficiency, control loop decoupling, AC and DC bus stabilization and efficient 

utilization while maintaining full speed tracking capability. The integrated scheme is fully stabilized using a novel Flexible 

Alternating Current Transmission System (FACTS) based green filter compensator that ensures stabilized DC bus voltage, 

minimal inrush current conditions, and damped load excursions.  

Keywords- Diesel-driven generator, Photovoltaic PV, Fuel Cell, Backup Battery, FACTS Green Power Filter, PMDC Drives, 

Electric Vehicles, Dynamic Gain Adjusting, Multi Objective Optimization (MOO), Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA). 

1. Introduction 

The need to reduce fossil fuel consumption and green 

house gases through the use of green renewable energy 

sources is motivated by economic viability and 

environmental concerns. The shift to clean fuel technology 

and efficient renewable energy utilization can help reduce 

green house gases and reduce global warming as well as 

reduce heavy reliance on hydro-carbon fossil fuel sources [1-

2].  The use of hybrid renewable energy sources can ensure 

sustainable and efficient utilization and electric AC-DC 

supply security [3]. EV locomotion is one of the alternative 

solutions for reducing fossil fuel consumption and pollutant 

gaseous emissions, responsible for the green house effect. 

However, using battery powered EV has its limitations, due 

to limited range battery weight size the vehicle habitability 

space utilization. Using hybrid AC and DC sources for EV 

locomotion drive allow taking advantage from their different 

V-I characteristics [4-5]. EV drives and propulsion systems 

can utilize AC and DC motor drives including new efficient 

Permanent Magnet DC motors [6-8]. Different classical  PI, 

PID, fuzzy logic based, nonlinear, adaptive variable 

structure, model reference adaptive control, artificial neural 

networks, feed forward computed torque control strategies 

using online estimators were proposed and utilized in speed 

regulation and other position control applications [9-10] 

mostly using fixed gain control strategies. Nonlinear drive 

dynamics, changing mechanical inertia, friction parameters 

coupled with sudden load variations and drive motor 

parametric sensitivities due to saturation and temperature 

changes necessitate a flexible, fast and effective online 

regulation and gain adjusting/tuning methods. Several AI-

related soft computing techniques, such as Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) 

are emerging as valuable, robust, simple and effective tools 

for traction and industrial process automation and on-line 
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control adaptation [11-18]. The soft computing tools are 

simple flexible and reliable with strong universal property 

independent of gradient information and structured 

optimization tools. In this paper, a hybrid PV-FC-Diesel-

Battery Backup scheme powering a PMDC-EV motor drive 

propulsion system is fully studied. The permanent magnet 

DC (PMDC) motor is located on each wheel of the four-

wheel EV and operated in full synchronism under various 

control strategies. The proposed EV scheme is controlled by 

a number of dynamic time decoupled control strategies with 

optimized gains using PSO and GA random search 

algorithms.  The PSO and GA based self regulating 

algorithms are utilized to track any reference speed trajectory 

under varying parameter and load conditions. The control 

system comprises four different regulators to track speed 

reference trajectory with minimum over/under current, 

inrush, ripple conditions. The proposed optimized time de-

scaled and decoupled control scheme has been tested for 

effective dynamical speed reference trajectory tracking, 

efficient power utilization, limited inrush current conditions 

and reduced AC-DC side transients and voltage excursions. 

2. Genetic Algorithm (GA) 

Genetic algorithm is an optimization method inspired by 

Darwin’s reproduction and survival of the fittest individual 

[11]. This algorithm looks for the fittest individual from a set 

of candidate solutions called population. The population is 

exposed to crossover, mutation and selection operators to 

find the fittest individual. The fitness function assesses the 

quality of each individual in evaluation process. The 

selection operator ensures the fittest individuals for the next 

generation. The crossover and mutation operators are used 

for variety of populations. The steps of genetic algorithm are 

depicted as follows: 

1. [Start] Generate random population of n 

chromosomes (suitable solutions for the problem)  

2. [Fitness] Evaluate the fitness f(x) of each 

chromosome x in the population  

3. [New population] Create a new population by 

repeating following steps until the new population is 

complete  

a. [Selection] Select two parent chromosomes 

from a population according to their fitness (the 

better fitness, the bigger chance to be selected)  

b. [Crossover] With a crossover probability 

cross over the parents to form a new offspring 

(children). If no crossover was performed, offspring 

is an exact copy of parents.  

c. [Mutation] With a mutation probability 

mutate new offspring at each locus (position in 

chromosome).  

d. [Accepting] Place new offspring in a new 

population  

4. [Replace] Use new generated population for a 

further run of algorithm  

5. [Test] If the end condition is satisfied, stop, and 

return the best solution in current population  

6. [Loop] Go to step 2  

3. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is an evolutionary 

computation optimization technique (a search method based 

on a natural system) developed by Kennedy and Eberhart 

[12]-[15]. The system initially has a population of random 

selective solutions. Each potential solution is called a 

particle. Each particle is given a random velocity and is 

flown through the problem space. The particles have memory 

and each particle keeps track of its previous best position 

(called the Pbest) and its corresponding fitness. There exist a 

number of Pbest for the respective particles in the swarm and 

the particle with greatest fitness is called the global best 

(Gbest) of the swarm. The basic concept of the PSO technique 

lies in accelerating each particle towards its Pbest and Gbest 

locations, with a random weighted acceleration at each time 

step. The main steps in the particle swarm optimization 

algorithm and selection process are described as follows: 

a Initialize a population of particles with 

random positions and velocities in d dimensions of 

the problem space and fly them. 

b Evaluate the fitness of each particle in the 

swarm. 

c For every iteration, compare each particle’s 

fitness with its previous best fitness (Pbest) 

obtained. If the current value is better than Pbest, 

then set Pbest equal to the current value and the 

Pbest location equal to the current location in the d-

dimensional space. 

d Compare Pbest of particles with each other 

and update the swarm global best location with the 

greatest fitness (Gbest). 

e Change the velocity and position of the 

particle According to equations (1) and (2) 

respectively. 

 
 idXgdPrandC

idXidPrandCidV





22

11idV 
          (1) 

ididid VXX               (2) 

Where: Vid and Xid represent the velocity and position 

of the i_th particle with d dimensions, respectively. rand1 and 

rand2 are two uniform random functions, and ω is the inertia 

weight, which is chosen beforehand. 

f Repeat steps (b) to (e) until convergence is 

reached based on some desired single or multiple 

criteria.   

The PSO optimization search utilized dynamic total error 

minimization algorithm has many key parameters and these 

are described as follows: ω is called the inertia weight that 

controls the exploration and exploitation of the search space 

because it dynamically adjusts velocity. Vmax is the 
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maximum allowable velocity for the particles (i.e. in the case 

where the velocity of the particle exceeds Vmax, then it is 

limited to Vmax). Thus, resolution and fitness of search 

depends on Vmax. If Vmax is too high, then particles will 

move beyond a good solution. If Vmax is too low, particles 

will be trapped in local minima. The constants C1 and C2 in 

(1) and (2), termed as cognition and social components, 

respectively. These are the acceleration constants which 

changes the velocity of a particle towards Pbest and Gbest 

(generally, somewhere between Pbest and Gbest). Fig. 1 shows 

the general flow chart of the PSO algorithm based on total 

error iterative minimum search. The most striking difference 

between PSO and the other evolutionary algorithms is that 

PSO chooses the path of cooperation over competition. The 

other optimization algorithms commonly use some form of 

decimation, survival of the fittest.  In contrast, the PSO 

population is stable and individuals are not destroyed or 

recreated. Individuals are influenced by the best performance 

of their neighbors. Individuals eventually converge on 

optimal points in the problem domain. In addition, the PSO 

traditionally does not have genetic operators like crossover 

between individuals and mutation, and other individuals 

never substitute particles during the run. So, in PSO all the 

particles tend to converge to the best solution quickly, 

comparing with GA. 

4. Multi-Objective Optimization 

The following definitions are used in the proposed 

Multi-Objective Optimization (MOO) search algorithm [16-

18]: 

Def. 1 The general MOO problem requiring the 

optimization of N objectives may be formulated as follows: 

Minimize 

 T

N xfxfxfxfxFy )(....,),(,)(,)()( 321


           (3) 

  M,1,2,j0xg j 


tosubject            (4) 

Where:   
T

Pxxxx **

2

*

1

* ,...,,


           (5) 

y
  is the objective vector, the  xgi

  represents the 

constraints and *x


 is a P-dimensional vector representing 

the decision variables within a parameter space  . The 

space spanned by the objective vectors is called the objective 

space. The subspace of the objective vectors satisfying the 

constraints is called the feasible space.  

Def. 2 A decision vector 1x


 is said to dominate the 

decision vector 2x


 (denoted by 21 xx





), if the decision 

vector 1x


 is not worse than 2x


in all objectives and strictly 

better than 2x


 in at least one objective. 

Def. 3 A decision vector 1x


 is called Pareto-optimal, 

if there does not exist another 2x


 that dominates it. An 

objective vector is called Pareto-optimal, if the 

corresponding decision vector is Pareto-optimal. 

Def. 4 The non-dominated set of the entire feasible 

search space Ω is the Pareto-optimal set. The Pareto-optimal 

set in the objective space is called Pareto-optimal front. 

4.1. Multi-Objective Genetic Algorithm (MOGA) 

The Non-Dominated Sorting Genetic Algorithm (NSGA) 

is a multi-objective genetic algorithm that was developed by 

Deb, et. al. [19]. This algorithm has been chosen over a 

conventional genetic algorithm for three principal reasons: 

(a) no need to specify a sharing parameter, (b) a strong 

tendency to find a diverse set of solutions along the Pareto 

optimal front, and (c) the ability to specify multiple 

objectives without the need to combine them using a 

weighted sum. The basic idea behind NSGA is the ranking 

process executed before the selection operation, as shown in 

Fig. 2. This process identifies non dominated solutions in the 

population, at each generation, to form non dominated fronts 

[20], after this, the selection, crossover, and mutation usual 

operators are performed. In the ranking procedure, the non 

dominated individuals in the current population are first 

identified. Then, these individuals are assumed to constitute 

the first non dominated front with a large dummy fitness 

value [20]. The same fitness value is assigned to all of them. 

In order to maintain diversity in the population, a sharing 

method is then applied. Afterwards, the individuals of the 

first front are ignored temporarily and the rest of population 

is processed in the same way to identify individuals for the 

second non dominated front. A dummy fitness value that is 

kept smaller than the minimum shared dummy fitness of the 

previous front is assigned to all individuals belonging to the 

new front. This process continues until the whole population 

is classified into non dominated fronts. Since the non 

dominated fronts are defined, the population is then 

reproduced according to the dummy fitness values. 

4.2. Multi-Objective Particle Swarm Optimization 

(MOPSO) 

In MOPSO [16-18], a set of particles are initialized in 

the decision space at random. For each particle i, a position xi 

in the decision space and a velocity vi are assigned. The 

particles change their positions and move towards the so far 

best-found solutions. The non-dominated solutions from the 

last generations are kept in the archive. The archive is an 

external population, in which the so far found non-dominated 

solutions are kept. Moving towards the optima is done in the 

calculations of the velocities as follows: 

 
 idXrdPrandC

idXpdPrandCidV





22

11idV 

              

(6) 

Where  
dp,

P ,
dr,

P  are randomly chosen from a single 

global Pareto archive, w is the inertia factor influencing the 

local and global abilities of the algorithm, Vi,d is the velocity 

of the particle i in the d_th dimension, c1 and c2 are weights 

affecting the cognitive and social factors, respectively. r1 and 

r2 are two uniform random functions in the range [0 , 1]. 

According to (6), each particle has to change its position Xi,d 

towards the position of the two guides Pr,d, Pp,d which must 
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be selected from the updated set of non-dominated solutions 

stored in the archive. The particles change their positions 

during generations until a termination criterion is met. 

Finding a relatively large set of Pareto-optimal trade-off 

solutions is possible by running the MOPSO for many 

generations. Figure 3 shows the flow chart of the Multi-

Objective Particle Swarm Optimization MOPSO. 

5. Sample AC-DC EV-Drive System 

Figures (4-5) show the proposed all-wheel electric 

vehicle drive system scheme with the PV, FC sources, the 

diesel generator and the backup battery. The DC 

compensator scheme is used to ensure stable, efficient, 

minimal inrush operation of the hybrid renewable energy 

scheme.  The novel PSO and GA self tuned multi regulators 

and coordinated controller are used for the following 

purposes: 

1) Diesel AC generator control regulator is based on 

excess generation and load dynamic matching as well as 

stabilization of the common DC collection bus using six 

pulse controlled rectifier,  

2) AC/DC power converter regulator to regulate the 

DC voltage at the Diesel engine AC bus and ensure limited 

inrush conditions as well as dynamic power matching to 

reduce current transients and improve utilization at the diesel 

engine interface AC-DC bus,   

3) Green plug filter compensator GPFC-SPWM 

regulator for pulse width switching scheme to regulate the 

DC bus voltage and minimize inrush current transients and 

load excursions and/or PV and FC non linear Volt-Ampere 

characteristics. The GPFC device acts as a matching DC-DC 

interface device between the DC load dynamic 

characteristics and that of the hybrid main PV, FC and 

backup diesel generator set, 

4) The permanent Magnet DC motor drive with the 

dynamic speed regulator  that ensure speed reference 

tracking with minimum inrush conditions and ensure reduced 

voltage transients and improved energy utilization, 

The unified DC-AC utilization EV-drive scheme is fully 

validated using the Matlab/Simulink software environment 

under normal conditions, DC load excursion, PMDC motor 

torque changes and the PV, and FC source output variations 

due to the inherent Volt-Ampere nonlinear relationship. 

Other excursion conditions in the diesel engine generator set 

are also introduced to assess the control system robustness, 

effective energy utilization and speed reference tracking. 

5.1. Diesel Generator Set 

From an electrical system point of view, a diesel driven 

AC generator can be represented as a prime mover and 

generator. Ideally, the prime mover has the capability to 

supply any power demand up to rated power at constant 

synchronous frequency. The synchronous generator 

connected to it must be able to keep the voltage constant at 

any load condition. The diesel engine kept the operating 

speed and frequency constant. When power demand 

fluctuates the diesel generator could vary its power output 

via fuel valve regulation and governor control. The 

synchronous generator must control its output voltage by 

controlling its excitation current. Thus, the diesel generating 

system, as an auxiliary source, must be able to control its 

frequency and its output voltage. The ability of the diesel 

generator to respond to any frequency changes is affected by 

the inertia of the diesel gen-set, the sensitivity of the 

governor, and the power capability of the diesel engine. The 

ability of the AC synchronous generator to control its 

terminal voltage can be affected by the field-winding time 

constant, the availability of DC excitation power to supply 

the field winding, and the time constant of the voltage 

control loop. 

5.2. Photovoltaic PV 

 The equivalent circuit shown in Figure 6 is used to 

model the PV cells used in the proposed PV array [21]. This 

model consists of a current source, a resistor and a reverse 

parallel connected diode. The PVA model developed and 

used in Matlab/Simulink environment is based upon the 

circuit given in Figure 7, in which the current produced by 

the solar cell is equal to that produced by the current source, 

minus that which flows through the diode, minus that which 

flows through the shunt resistor:  

I = IL − ID − ISH              (7) 

Where: I = output current, IL = photo generated current, 

ID = diode current, ISH = shunt current. The current through 

these elements is governed by the voltage across them: 

Vj = V + IRS              (8) 

Where: Vj = voltage across both diode and resistor RSH 

(volts <http://en.wikipedia.org/wiki/Volts>), V = voltage 

across the output terminals (volts), I = output current 

(amperes), RS = series resistance 

(<http://en.wikipedia.org/wiki/%CE%A9>). 

The current diverted through the diode is: 





























 1exp

nkT

jqV

oIDI             (9) 

Where: I0 = reverse saturation current 

<http://en.wikipedia.org/wiki/Saturation_current> (amperes), 

n = diode ideality factor (1 for an ideal diode), q = 

elementary charge 

<http://en.wikipedia.org/wiki/Elementary_charge>, k = 

Boltzmann's constant 

<http://en.wikipedia.org/wiki/Boltzmann%27s_constant>, T 

= absolute temperature 

<http://en.wikipedia.org/wiki/Absolute_temperature>. 

  The characteristic equation of a solar cell, which relates 

solar cell parameters to the output current and voltage [22]: 

 

SHR

sIRV

nkT

sIRVq
oILII



















 
 1exp             (10) 
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Where: RSH = shunt resistance (Ω), The I-V curve of an 

illuminated PV cell has the shape shown in Figure 8  as the 

voltage across the  measuring load is swept from zero to 

VOC, The power produced by the cell in Watts can be easily 

calculated along the I-V sweep by the equation P=IV.   At 

the ISC and VOC points, the power will be zero and the 

maximum value for power will occur between the two.  

5.3. Fuel Cell Battery Model 

Fuel cell stacks were connected in series/parallel 

combination to achieve the rating desired. Fig. 8 shows a 

simplified diagram of the PEMFC system [23-24]. The FC 

model here is for a type of PEM, which uses the following 

electrochemical reaction: 

EnergyElectricalHeat222

1
2  OHOH

       
(11) 

Fig. 9 shows a simulated V - I (voltage versus current) 

polarization curve of a fuel cell [23-24]. As the cell current 

begins to increase from zero, a sudden drop of the output 

voltage of the fuel cell is seen. This drop of the cell voltage is 

due to activation voltage loss. Then, almost a linear decrease 

of the cell voltage is seen as the cell current increases beyond 

certain values, as shown in Fig. 9, which is a result of the 

ohmic loss. Finally, the cell voltage drops sharply to zero as 

the load current approaches the maximum current density 

that can be generated of the fuel cell. The sharp voltage drop 

is the effect of the concentration loss in the fuel cell. The fuel 

cell can be commonly modeled by simple equivalent first 

order circuit shown in figure 10. The open circuit voltage is 

modified as follows: 

))ln(( onoc iAENE            (12) 

Where: 
FZ

RT
A


            (13) 

Where: R = 8.3145 J / (mol K), F = 96485 A s/mol, z = 

Number of moving electrons, En = Nernst voltage, which is 

the thermodynamics voltage of the cells and depends on the 

temperatures and partial pressures of reactants and products 

inside the stack, i0 = Exchange current, which is the current 

resulting from the continual backward and forward flow of 

electrons from and to the electrolyte at no load. It depends 

also on the temperatures and partial pressures of reactants 

inside the stack, α = Charge transfer coefficient, which 

depends on the type of electrodes and catalysts used, T = 

Temperature of operation. The fuel cell voltage VFC is 

modeled as [22-23]: 

LossnConcentrioLossOhmicLossActivationocFC VVVEV  (14) 

Where: 








 


o

nFC
LossActivation

i

iI
AV log         (15) 

 nFCmLossOhmic iIRV            (16) 








 


L

nFC
LossionConcentrat

i

iI
BV 1log         (17) 

Fuel cell stacks were connected in series/parallel 

combination to achieve the rating desired. The output of the 

fuel cell array was connected to a DC bus through a DC/DC 

converter. The DC bus voltage was kept constant via a DC 

bus voltage controller. 

5.4. FACTS Green Plug Filter Compensator (GPFC) 

The FACTS- GPFC is used to address the common 

concerns of inrush current conditions, voltage variations 

(overvoltage, under-voltage, and sustained supply 

interruptions), including short duration voltage variations 

(interruption, sags, and swells), voltage imbalance, AC-DC 

waveform distortion and power frequency variations [25]. 

The FACTS-GPFC device is used to limit the undesirable 

transient and inrush currents and voltage excursions. 

6. Dynamic Error Driven Controller  

The proposed control system comprises four regulators 

for the Diesel DC generator fuel throttle control, FACTS-

GPFC regulator, PMDC motor drive speed tracking, and the 

AC/DC power converter regulator. Figures (11-14) depict the 

proposed multi-loop dynamic self regulating controllers 

based on Multi Objective Optimization search and 

optimization technique based on soft computing PSO and 

GA. The global error is the summation of the three loop 

individual errors including voltage stability, current limiting 

and synthesize dynamic power loops. Each multi loop 

dynamic control scheme is used to reduce a global error 

based on a tri-loop dynamic error summation signal and to 

mainly track a given  speed reference trajectory loop error in 

addition to other supplementary motor current limiting and 

dynamic power loops are used as auxiliary loops to generate 

a dynamic global total error signal that consists of not only 

the main loop speed error but also the current ripple, over 

current limit and dynamic over load power conditions. 

The global error signal is input to the self tuned 

controllers shown in figures (15-18). The (per-unit) three 

dimensional-error vector (evg ,eIg, epg) of the diesel engine 

controller scheme is governed by the following equations: 

     
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               (20) 

The global error etg(k) for the MPFC AC side scheme at 

a time instant: 

       kekekeke pgpgigigvgvgtg           (21) 
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  In the same manner, The (per-unit) three dimensional-

error vector (evd ,eId, epd) of the GPFC scheme is governed by 

the following equations: 
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And the global error etd (k) for the DC side green plug 

filter compensator GPFC scheme at a time instant: 

       kekekeke pdpdididvdvdtd           (25) 

In addition, The (per-unit) three dimensional-error vector 

(evR ,eIR, epR) of the three phase controlled rectifier scheme is 

governed by the following equations: 
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The global error etR (k) for the three phase controlled 

converter rectifier scheme at a time instant: 
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Finally, the (per-unit) three dimensional-error vector 

(ewm,eIm, epm) of the PMDC motor scheme is governed by 

the following equations: 
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And the global error etm (k) for the MPFC scheme at a 

time instant: 

       kekekeke pmpmimimmmtm            (33) 

A number of conflicting objective functions are selected 

to optimize using the PSO algorithm. These functions are 

defined by the following: 

 tmtdtRtg eeeeMinimizeJ ,,,1           (34) 

)()()(2 kkkeErrorStateSteadyJ mref   (35) 

TimeSettlingJ 3            (36) 

ShootOverMaximumJ 4           (37) 

TimeRiseJ 5            (38) 

In general, to solve this complex optimality search 

problem, there are two possible optimization techniques 

based on Particle Swarm Optimization (PSO): Single 

aggregate selected Objective Optimization SOO, which is 

explained and Multi Objective Optimization MOO. The main 

procedure of the SOO is based on selecting a single 

aggregate objective function with weighted single objective 

parameters scaled by a number of weighting factors. The 

objective function is optimized (either minimized or 

maximized) using either Genetic Algorithm GA or Particle 

Swarm Optimization search algorithm (PSO) methods to 

obtain a single global or near optimal solution. On the other 

hand, the main objective of the Multi-Objective (MO) 

problem is finding the set of acceptable (trade-off) Optimal 

Solutions. This set of accepted solutions is called Pareto 

front. These acceptable trade-off multi level solutions give 

more ability to the user to make an informed decision by 

seeing a wide range of near optimal selected solutions that 

are feasible and acceptable from an “overall” standpoint. 

Single Objective Optimization (SOO) may ignore this trade-

off viewpoint, which is crucial. The main advantages of the 

proposed MOO method are: It doesn’t require a priori 

knowledge of the relative importance of the objective 

functions, and It provides a set of acceptable trade-off near 

optimal solutions. This set is called Pareto front or optimality 

trade-off surfaces. Both SOO and MOO searching algorithms 

are tested, validated and compared. 

The random search dynamic error driven algorithm 

regulates the controllers’ gains using PSO and GA to 

minimize the system total error, the settling time, the rising 

time, and the maximum overshoot. The dynamic Tri Loop 

Error Driven controller is a novel advanced regulation 

concept that operates as an adaptive dynamic type multi-

purpose controller capable of handling sudden parametric 

changes, load and/or DC source excursions. By using the Tri 

Loop Error Driven controller, it is expected to have a 

smoother, less dynamic overshoot, fast and more robust 

speed controller when compared to those of classical control 

schemes. The proposed general PMDC Motor Drive Model 

with the novel Tri Loop Error Driven controller are fully 

validated in this paper for effective reference speed trajectory 

tracking under different loading conditions and parametric 

variations; such as temperature changes while driving a 

complex mechanical load with non-linear parameters and/or 

torque-speed characteristics.  
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6.1. Self Tuned Conventional PID Controller  

Fundamentally, the conventional PID controller 

comprises three basic control actions. They are simple to 

implement and they provide good performance. The tuning 

process of the gains of PID controllers can be complex 

because is iterative: first, it is necessary to tune the 

"Proportional" mode, then the "Integral", and then add the 

"Derivative" mode to stabilize the overshoot, then add more 

"Proportional", and so on. The PID controller has the 

following form in the time domain as shown in figure 15: 

dt

tde
KdtteKteKtu d

t

ip

)(
)()()(

0

           (39) 

Where e (t) is the selected system error, u(t) the control 

variable, Kp the proportional gain, Ki the integral gain, and 

Kd is the derivative gain. Each coefficient of the PID 

controller adds some special characteristics to the output 

response of the system. Because of this, choosing the right 

parameters becomes a crucial decision. In this scheme, the 

Tri loop Error Driven Controller is utilized with traditional 

PID controller. PID controller gains (KP, KI, KD) are 

dynamically self tuned using the PSO and GA dynamic 

search and optimization criterion based on total error 

minimization, steady state error, maximum overshoot, 

settling time and rising time.  

6.2. Self Tuned Modified PID Controller- I 

In the Tuned modified PID controller- I proposed 

controller scheme, an optimally tuned modified PID 

controller for the PMDC motor drive systems is developed 

using the Particle Swarm optimization Technique PSO and 

the Genetic Algorithm GA, where the additional integral of 

the squared system error is implemented in this modified PID 

controller as shown in Fig. 16,  
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ip   (40) 

The modified PID controller gains (KP, KI, KD, and Ke) 

are tuned using the PSO searching algorithm to minimize the 

selected objective functions (J1 - J5). 

6.3. Self Tuned Modified PID Controller - II 

The Tuned modified PID controller-II proposed control 

scheme is shown in fig. 17. The resultant control voltage has 

the form in the time domain as: 
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6.4. Self Tuned Variable Structure Sliding Mode Bang-

Bang VSC/SMC/B-B Controller 

In the variable structure sliding mode controller scheme, 

an optimally adaptive and self tuned variable structure 

sliding mode controller for PMDC motor drive systems using 

Particle Swarm optimization Technique PSO and Genetic 

Algorithm GA as shown in fig. 18. The slope of the sliding 

surface is designed as: 

dt

de
Ke t

t              (42) 

With adaptive term 

0 1 t
e               (43) 

Where  

       2222
ppVVIIt eeeee            (44) 

The system control voltage has the following form in the 

time domain [20]:the control is an on-off logic; that is: When   

The PSO and GA optimization and parameters searching 

algorithms are implemented for tuning the gains b0, b1 and a 

to minimize the selected objective functions (J1 - J5). This 

test is to verify that the proposed VSC/B-B with adaptive  

can maintain the motor speed with nonlinear ( )
m

J   and  

( )
m

B   even if the load changes; accordingly, the robustness 

can be confirmed. 
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Fig. 1. Flow chart for the PSO minimizing search algorithm 
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Fig. 2. Flow chart of NSGA. 
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Fig. 3. Flow chart of the MOPSO optimization search 

algorithm 

7. Digital Simulation Results 

The hybrid EV-drive scheme using PV, FC, and backup 

diesel generation with battery backup renewable generation 

system performance is compared for two cases, with fixed 

and self tuned type controllers using either GA or PSO. The 

second case is to compare the performance with Artificial 

Neural Network ANN controller and Fuzzy Logic Controller 

FLC with the self tuned type controllers using either GA or 

PSO. All of the controllers discussed in the paper have been 

applied to the speed tracking control of the same EV for 

performance comparison. There are three different speed 

references. In the first speed track, the speed increases 

linearly and reaches the 1 PU at the end of the first five 

seconds, and then the reference speed remains speed constant 

during five seconds. At tenth second, the reference speed 

decreases with same slope as at the first five seconds. After 

fifteen second, the motor changes the direction and EV 

increases its speed through the reverse direction. At twentieth 

second, the reference speed reaches the -1 PU and remains 

constant speed at the end of twenty fifth second and then the 

reference speed decreases and becomes zero at thirtieth 

second. The second reference speed waveform is sinusoidal 

and its magnitude is 1 PU and the period is 12 seconds. The 

third reference track is constant speed reference starting with 

an exponential track. In all references, the system responses 

have been observed. Matlab-Simulink Software was used to 

design, test, and validate the effectiveness of the integrated 

micro grid for PMDC driven Electric Vehicle scheme using 

PV, FC, and backup Diesel generation with battery backup 

renewable generation system with the FACTS device. The 

digital dynamic simulation model using Matlab-Simulink 

software environment allows for low cost assessment and 

prototyping, system parameters selection and optimization of 

control settings. The use of PSO and GA search algorithms 

are used in online gain adjusting to minimize controller 

absolute value of total error. This is required before full scale 

prototyping which is both expensive and time consuming. 

The effectiveness of dynamic simulators brings on detailed 

sub-models selections and tested sub-models Matlab library 

of power system components already tested and validated.  

The common DC bus voltage reference is set at 1 PU. 

Digital simulations are obtained with sampling interval Ts = 

20µs. Dynamic responses obtained with GA are compared 

with ones resulting from the PSO for the proposed self tuned 

controllers. The dynamic simulation conditions are identical 

for all tuned controllers. To compare the global performances 

of all controllers, the Normalised Mean Square Error 

(NMSE) deviations between output plant variables and 

desired values, and is defined as: 
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The digital simulation results validated the effectiveness 

of both GA and PSO based tuned controllers in providing 

effective speed tracking minimal steady-state errors. 

Transients are also damped with minimal overshoot, settling 

time, and fall time. The GA and PSO based self tuned 

controllers are more effective and dynamically advantageous 

in comparison with fixed type controllers (tables 1-4), the 

Artificial Neural Network ANN controller (table 5) and the 

Fuzzy Logic Controller FLC (table 6). The self regulation is 

based on minimal value of absolute total/global error of each 
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regulator. The control system comprises the three dynamic 

multi loop error driven regulator is coordinated to minimize 

the selected objective functions. SOO obtains a single global 

or near optimal solution based on a single weighted objective 

function. The weighted single objective function combines 

several objective functions using specified or selected 

weighting factors as follows: 

5544332211 

function   objective weighted

JJJJJ  


 

(47) 

Where α1 = 0.20, α2 = 0.20, α3 = 0.20, α4 = 0.20, α5 = 

0.20 are selected weighting factors. J1, J2, J3, J4, J5 are the 

selected objective functions. On the other hand, the MO finds 

the set of acceptable (trade-off) Optimal Solutions. This set 

of accepted solutions is called Pareto front. These acceptable 

trade-off multi level solutions give more ability to the user to 

make an informed decision by seeing a wide range of near 

optimal selected solutions.  

7.1. Self tuned classical PID controller: 

Table 7 shows the DC bus dynamic behavior comparison 

using the GA based self tuned classical PID controller for the 

three selected reference tracks. In addition, table 8 shows the 

system dynamic behavior using the PSO based PID tuned 

dynamic controllers. Figures (19-24) show the effectiveness 

of MOPSO and MOGA search and optimized control gains 

in tracking the PMDC-EV motor three reference speed 

trajectories. Comparing the PMDC-EV dynamic response 

results of the two study cases, with GA and PSO tuning 

algorithms and traditional controllers with constant controller 

gains results shown in table 1, ANN controller in table 5 and 

FLC in table 6, it is quite apparent that the GA and PSO 

tuning algorithms highly improved the PMDC-EV system 

dynamic performance from a general power quality point of 

view. The GA and PSO tuning algorithms had a great impact 

on the system efficiency improving it from 0.873267 

(constant gains controller), 0.928253 (ANN controller) and 

0.937334 (FLC) to around 0.94777 (GA based tuned 

controller) and 0.9582 (PSO based tuned controller) which is 

highly desired. Moreover, The Normalized Mean Square 

Error (NMSE-VDC-Bus) of the DC bus voltage is reduced 

from 0.06263 (constant gains controller), 0.04827 (ANN 

controller) and 0.03022 (FLC) to around 0.007076 (GA 

based tuned controller) and 0.006009 (PSO based tuned 

controller). In addition the Normalized Mean Square Error 

(NMSE-wm) of the PMDC motor is reduced from 0.07681 

(constant gains controller), 0.02627 (ANN controller) and 

0.02016 (FLC) to around 0.008819 (GA based tuned 

controller) and 0.007419 (PSO based tuned controller). 

Maximum Transient DC Voltage Over/Under Shoot (PU) is 

reduced from 0.06030 (constant gains controller), 0.04186 

(ANN controller) and 0.03126 (FLC) to around 0.004936 

(GA based tuned controller) and 0.003582 (PSO based tuned 

controller). Maximum Transient DC Current - Over/Under 

Shoot (PU) is reduced from 0.09954 (constant gains 

controller), 0.07355 (ANN controller) and 0.04383 (FLC) to 

around 0.006094 (GA based tuned controller) and    

0.005555 (PSO based tuned controller). DC bus voltage (PU) 

is improved from 0.8819 (constant gains controller), 

0.932736 (ANN controller) and 0.94745 (FLC) to around 

0.96062 (GA based tuned controller) and 0.97230 (PSO 

based tuned controller). DC bus current (PU) is reduced from 

0.07030 (constant gains controller), 0.67464 (ANN 

controller) and 0.64712 (FLC) to around 0.530199 (GA 

based tuned controller) and 0.5425 (PSO based tuned 

controller). PMDCM total controller Error (etm) is reduced 

from 0.05513 (constant gains controller), 0.04200 (ANN 

controller) and 0.02154 (FLC) to around 0.008708 (GA 

based tuned controller) and 0.007945 (PSO based tuned 

controller). DC side GPFC Error (etd) is reduced from 

0.04959 (constant gains controller), 0.03416 (ANN 

controller) and 0.02416 (FLC) to around 0.009078 (GA 

based tuned controller) and 0.008953 (PSO based tuned 

controller). The diesel engine gen set total controller Error 

(etg) is reduced from 0.04959 (constant gains controller), 

0.04507 (ANN controller) and 0.02964 (FLC) to around 

0.003974 (GA based tuned controller) and 0.002487 (PSO 

based tuned controller). The diesel engine converter total 

controller Error (etR) is reduced from 0.04249 (constant 

gains controller), 0.03978 (ANN controller) and 0.0260 

(FLC) to around 0.006566 (GA based tuned controller) and 

0.005391 (PSO based tuned controller). 

7.2. Self tuned weighted modified PID controller- I: 

Table 9 shows the DC bus dynamic behavior comparison 

using the GA based modified PID tuned dynamic controllers-

I for the three selected reference tracks. In addition, table 10 

shows the system dynamic behavior  using the PSO based 

modified PID tuned dynamic controllers-I. Figures (25-30) 

show the effectiveness of MOPSO and MOGA search and 

optimized control gains in tracking the PMDC-EV motor 

three reference speed trajectories. Comparing the PMDC-EV 

dynamic response results of the two study cases, with GA 

and PSO tuning algorithms and traditional controllers with 

constant controller gains results shown in table 2, ANN 

controller in table 5 and FLC in table 6, it is quite apparent 

that the GA and PSO tuning algorithms highly improved the 

PMDC-EV system dynamic performance from a general 

power quality point of view. The GA and PSO tuning 

algorithms had a great impact on the system efficiency 

improving it from 0.891517 (constant gains controller), 

0.928253 (ANN controller) and 0.937334 (FLC) to around 

0.933797 (GA based tuned controller) and 0.95622 (PSO 

based tuned controller) which is highly desired. Moreover, 

The Normalized Mean Square Error (NMSE-VDC-Bus) of 

the DC bus voltage is reduced from 0.08323 (constant gains 

controller), 0.04827 (ANN controller) and 0.03022 (FLC) to 

around 0.009372 (GA based tuned controller) and 0.007157 

(PSO based tuned controller). In addition the Normalized 

Mean Square Error (NMSE-wm) of the PMDC motor is 

reduced from 0.05022 (constant gains controller), 0.02627 

(ANN controller) and 0.02016 (FLC) to around 0.007118 

(GA based tuned controller) and 0.006477 (PSO based tuned 

controller). Maximum Transient DC Voltage Over/Under 

Shoot (PU) is reduced from 0.062632 (constant gains 

controller), 0.04186 (ANN controller) and 0.03126 (FLC) to 

around 0.009151 (GA based tuned controller) and 0.007736 

(PSO based tuned controller). Maximum Transient DC 
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Current - Over/Under Shoot (PU) is reduced from 0.085243 

(constant gains controller), 0.07355 (ANN controller) and 

0.04383 (FLC) to around 0.008397 (GA based tuned 

controller) and 0.007235 (PSO based tuned controller). DC 

bus voltage (PU) is improved from 0.903496 (constant gains 

controller), 0.932736 (ANN controller) and 0.94745 (FLC) 

to around 0.9861 (GA based tuned controller) and 0.97350 

(PSO based tuned controller). DC bus current (PU) is 

reduced from 0.71977 (constant gains controller), 0.67464 

(ANN controller) and 0.64712 (FLC) to around 0.62814 (GA 

based tuned controller) and 0.61669 (PSO based tuned 

controller). PMDCM total controller Error (etm) is reduced 

from 0.08924 (constant gains controller), 0.04200 (ANN 

controller) and 0.02154 (FLC) to around 0.007699 (GA 

based tuned controller) and 0.005898 (PSO based tuned 

controller). DC side GPFC Error (etd) is reduced from 

0.07240 (constant gains controller), 0.03416 (ANN 

controller) and 0.02416 (FLC) to around 0.006135 (GA 

based tuned controller) and 0.004256 (PSO based tuned 

controller). The diesel engine gen set total controller Error 

(etg) is reduced from 0.064996 (constant gains controller), 

0.04507 (ANN controller) and 0.02964 (FLC) to around 

0.006440 (GA based tuned controller) and 0.007857 (PSO 

based tuned controller). The diesel engine converter total 

controller Error (etR) is reduced from 0.053814 (constant 

gains controller), 0.03978 (ANN controller) and 0.0260 

(FLC) to around 0.007476 (GA based tuned controller) and 

0.007545 (PSO based tuned controller). 

7.3. Self tuned weighted modified PID controller - II: 

Table 11 shows the DC bus dynamic behavior 

comparison using the GA based modified PID tuned 

dynamic controllers-II for the three selected reference tracks. 

In addition, table 12 shows the system dynamic behavior 

using the PSO based PID tuned dynamic controllers. Figures 

(31-36) show the effectiveness of MOPSO and MOGA 

search and optimized control gains in tracking the PMDC-

EV motor three reference speed trajectories. Comparing the 

PMDC-EV dynamic response results of the two study cases, 

with GA and PSO tuning algorithms and traditional 

controllers with constant controller gains results shown in 

table 3, ANN controller in table 5 and FLC in table 6, it is 

quite apparent that the GA and PSO tuning algorithms highly 

improved the PMDC-EV system dynamic performance from 

a general power quality point of view. The GA and PSO 

tuning algorithms had a great impact on the system 

efficiency improving it from 0.91325 (constant gains 

controller), 0.928253 (ANN controller) and 0.937334 (FLC) 

to around 0.94371 (GA based tuned controller) and 0.953824 

(PSO based tuned controller) which is highly desired. 

Moreover, The Normalized Mean Square Error (NMSE-

VDC-Bus) of the DC bus voltage is reduced from 0.06109 

(constant gains controller), 0.04827 (ANN controller) and 

0.03022 (FLC) to around 0.005516 (GA based tuned 

controller) and 0.006396 (PSO based tuned controller). In 

addition the Normalized Mean Square Error (NMSE-wm) of 

the PMDC motor is reduced from 0.06130 (constant gains 

controller), 0.02627 (ANN controller) and 0.02016 (FLC) to 

around 0.006859 (GA based tuned controller) and 0.0054443 

(PSO based tuned controller). Maximum Transient DC 

Voltage Over/Under Shoot (PU) is reduced from 0.0655 

(constant gains controller), 0.04186 (ANN controller) and 

0.03126 (FLC) to around 0.0054632 (GA based tuned 

controller) and 0.0053175 (PSO based tuned controller). 

Maximum Transient DC Current - Over/Under Shoot (PU) is 

reduced from 0.09802 (constant gains controller), 0.07355 

(ANN controller) and 0.04383 (FLC) to around 0.008899 

(GA based tuned controller) and 0.00753175 (PSO based 

tuned controller). DC bus voltage (PU) is improved from 

0.91325 (constant gains controller), 0.932736 (ANN 

controller) and 0.94745 (FLC) to around 0.96469 (GA based 

tuned controller) and 0.964346 (PSO based tuned controller). 

DC bus current (PU) is reduced from 0.74441 (constant gains 

controller), 0.67464 (ANN controller) and 0.64712 (FLC) to 

around 0.61953 (GA based tuned controller) and 0.618023 

(PSO based tuned controller). PMDCM total controller Error 

(etm) is reduced from 0.08187 (constant gains controller), 

0.04200 (ANN controller) and 0.02154 (FLC) to around 

0.0013194 (GA based tuned controller) and 0.0015124 (PSO 

based tuned controller). DC side GPFC Error (etd) is reduced 

from 0.06634 (constant gains controller), 0.03416 (ANN 

controller) and 0.02416 (FLC) to around 0.0052439 (GA 

based tuned controller) and 0.0064763 (PSO based tuned 

controller). The diesel engine gen set total controller Error 

(etg) is reduced from 0.054390 (constant gains controller), 

0.04507 (ANN controller) and 0.02964 (FLC) to around 

0.004942 (GA based tuned controller) and 0.005347 (PSO 

based tuned controller). The diesel engine converter total 

controller Error (etR) is reduced from 0.04346 (constant 

gains controller), 0.03978 (ANN controller) and 0.0260 

(FLC) to around 0.0066789 (GA based tuned controller) and 

0.0074459 (PSO based tuned controller). 

7.4. Self tuned Variable Structure Sliding Mode 

Controller VSC/SMC/B-B: 

Table 13 shows the DC bus dynamic behavior 

comparison using the GA based Self tuned Variable structure 

sliding mode controller for the three selected reference 

tracks. In addition, table 14 shows the system dynamic 

behavior using the PSO based PID tuned dynamic 

controllers. Figures (37-42) show the effectiveness of 

MOPSO and MOGA search and optimized control gains in 

tracking the PMDC-EV motor three reference speed 

trajectories. Comparing the PMDC-EV dynamic response 

results of the two study cases, with GA and PSO tuning 

algorithms and traditional controllers with constant controller 

gains results shown in table 4, ANN controller in table 5 and 

FLC in table 6, it is quite apparent that the GA and PSO 

tuning algorithms highly improved the PMDC-EV system 

dynamic performance from a general power quality point of 

view. The GA and PSO tuning algorithms had a great impact 

on the system efficiency improving it from 0.906631 

(constant gains controller), 0.928253 (ANN controller) and 

0.937334 (FLC) to around 0.948156 (GA based tuned 

controller) and 0.930708 (PSO based tuned controller) which 

is highly desired. Moreover, The Normalized Mean Square 

Error (NMSE-VDC-Bus) of the DC bus voltage is reduced 

from 0.08443 (constant gains controller), 0.04827 (ANN 

controller) and 0.03022 (FLC) to around 0.007304 (GA 

based tuned controller) and 0.005854 (PSO based tuned 
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controller). In addition the Normalized Mean Square Error 

(NMSE-wm) of the PMDC motor is reduced from 0.053548 

(constant gains controller), 0.02627 (ANN controller) and 

0.02016 (FLC) to around 0.0076308 (GA based tuned 

controller) and 0.006309 (PSO based tuned controller). 

Maximum Transient DC Voltage Over/Under Shoot (PU) is 

reduced from 0.054604 (constant gains controller), 0.04186 

(ANN controller) and 0.03126 (FLC) to around 0.009302 

(GA based tuned controller) and 0.007259 (PSO based tuned 

controller). Maximum Transient DC Current - Over/Under 

Shoot (PU) is reduced from 0.087336 (constant gains 

controller), 0.07355 (ANN controller) and 0.04383 (FLC) to 

around 0.00292 (GA based tuned controller) and 0.005987 

(PSO based tuned controller). DC bus voltage (PU) is 

improved from 0.917020 (constant gains controller), 

0.932736 (ANN controller) and 0.94745 (FLC) to around 

0.97417 (GA based tuned controller) and 0.974602 (PSO 

based tuned controller). DC bus current (PU) is reduced from 

0.769594 (constant gains controller), 0.67464 (ANN 

controller) and 0.64712 (FLC) to around 0.614695 (GA 

based tuned controller) and 0.607674 (PSO based tuned 

controller). PMDCM total controller Error (etm) is reduced 

from 0.095145 (constant gains controller), 0.04200 (ANN 

controller) and 0.02154 (FLC) to around 0.009167 (GA 

based tuned controller) and 0.0048638 (PSO based tuned 

controller). DC side GPFC Error (etd) is reduced from 

0.70746 (constant gains controller), 0.03416 (ANN 

controller) and 0.02416 (FLC) to around 0.004618 (GA 

based tuned controller) and 0.0074294 (PSO based tuned 

controller). The diesel engine gen set total controller Error 

(etg) is reduced from 0.067513 (constant gains controller), 

0.04507 (ANN controller) and 0.02964 (FLC) to around 

0.005121 (GA based tuned controller) and 0.007013 (PSO 

based tuned controller). The diesel engine converter total 

controller Error (etR) is reduced from 0.086233 (constant 

gains controller), 0.03978 (ANN controller) and 0.0260 

(FLC) to around 0.003265 (GA based tuned controller) and 

0.0053836 (PSO based tuned controller). 

8. Conclusion 

The paper validated a novel hybrid AC-DC EV drive 

scheme with self regulating soft computing AI based PSO 

and GA search algorithms are used in gain tuning. The EV 

PMDC-drive system is powered by a hybrid integrated 

renewable energy (PV-FC-Diesel-Battery) system. A number 

of weighted modified PID and variable structure control 

strategies are fully validated for effective speed reference 

tracking, minimal overshoot and steady state error. The 

proposed control strategies utilize multi-loop error driven 

time-discalced decoupled regulation loops with dynamic 

tunable gains and settings dynamically optimized and 

adjusted using multi-objective PSO/GA random search and 

optimization algorithm. The hybrid EV-PMDC drive system 

is fully stabilized using the FACTS-GPFC located at the 

common DC-bus. The FACTS-GPFC device ensures 

stabilized DC bus voltage, minimal overvoltage transients 

and limited inrush current conditions. The near optimal 

dynamic iterative search and optimization results show the 

effectiveness of the Multi Objective Particle Swarm 

Optimization approach MOPSO and Genetic Algorithm 

MOGA to effectively control the power transfer and efficient 

energy utilization from all renewable energy sources to the 

PMDC motor drives while ensuring minimum inrush current 

and ripple conditions. The hybrid AC-DC EV scheme was 

simulated using Matlab-Simulink software environment. The 

hybrid scheme using other novel AC and DC side FACTS 

devices and coordinated multi-regulation control strategies is 

being extended to hybrid renewable green energy (Wind, PV, 

FC, Gas Turbine, Micro-Hydro, …) for village/Island 

electricity and smart grid Vehicle to Grid (V2G) 

Applications. 
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Fig. 5.  Schematic diagram of a prototype four-wheel drive 

electric vehicle using four PMDC motors 

 

Fig. 6.  the equivalent circuit of a solar cell 

 

Fig. 7. The dynamic behavior  of a solar cell at particular 

intensities of solar radiation 

 

Fig. 8. Simplified diagram of the Fuel Cell PEMF-C system. 
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Fig. 9. (V - I) polarization curve of an SOFC 

 

Fig. 10. The equivalent circuit of an electrochemical fuel 

cell. 

Appendix 

Synchronous Generator 

3 phase, 2 pairs of poles, Vg=0.6 kV (L-L), Sg=3000 KVA, 

Rs = 0.0036 PU, H = 2, F = 0, P = 2, Xd = 1.56 PU, Xd` = 

0.296 PU, Xd`` = 0.177 PU, Xq = 1.06 PU, Xq`` = 0.177 PU, 

Xl = 0.052 PU.  

Diesel: 100 KW @ 3600rpm, 240 V, Rf0 = 0.05 Ohms, Lf0 = 

5 mH, Cf0 =9000 µF,  

Fuel Cell: 100 KW, 240 Vdc , Rf2 = 0.1 Ω, Lf2 = 10 mH, Cf2 

=9000 µF,Open circuit voltage (V) = 240, nominal voltage = 

220 v, maximum voltage = 220 v , nominal power 50 KW , 

maximum power 110 KW, Nominal current = 227.27A , 

maximum current 500A Number of Cells = 220 , nominal 

Efficiency, 55%, Nominal air flow = 1300 lpm, operating 

temperature = 65 Celsius, Nominal fuel pressure 1.5 bar , 

nominal air pressure = 1 bar. 

PV: 240V, 100 KW, Rf1 = 0.1 Ω, Lf1 = 10 mH, Cf1 =9000 µF, 

Nom. Voltage 300V, Nominal current 11A, Nom. Power 

3300 W, Ns = 100 , Np = 135 , Tx = 20 , Sx = 102.0507, Ipv 

= 5 , Tc = 20 , Sc = 205 , 

Battery: Nominal voltage: 240 VDC, Rated capacity: 1200 

Ah, Initial State-Of-Charge: 100%, Discharge current: 10, 5 

A, Rf3 = 0.1 Ω, Lf3 = 10 mH, Cf3 =9000 µF, 

DC side GPFC: Rs = 0.1 Ω, Ls = 10  mH, Cs =1775 µF,  Rd = 

0.2 Ω, Ld = 10 mH, Cd = 6000 µF, Rfd = 20 KΩ,  

EV-PMDC motor. The armature coil of the DC motor can be 

presented by an inductance (Lm) in series with resistance 

(Rm) in series with an induced voltage (em) which opposes 

the voltage source. The differential equations into state space 

form for the armature current and angular velocity can be 

written as: 

a
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The load torque is given by and the nonlinear inertia J and 

viscous friction B have the following variable non-linear 

forms:  
2

210 mmL TTTT   , 2

210 mmm BBBB   , 2

210 mmm JJJJ            

 where: Rm = 0.1 Ω, Lm = 10 mH, 100 KW, 220 Vdc, Jm = 

0.7, Bm = 0.08, 3600 rpm , Ke = Kt = 1.06 , T0=1.2, 

T1=0.006, T2=6.6*10
-5

, B0=5.8*10
-3

, B1=25*10
-6

, 

B2=0.423*10
-6

, J0=14.4*10
-3

, J1=62.6*10
-6

, J2=1.06*10
-6

 

Control Weightings Scaling: vd = 0.86, Id = 0.45, Pd = 0.25, 

vg = 0.8,  Ig = 0.50, Pg = 0.30, vR = 0.75, IR = 0.62, PR = 

0.15,  vm = 0.92, Im = 0.54, Pm = 0.24,  

Tuned conventional PID controller Gains: 10  ≤ KPg ,KPd  , 

KPR  , KPm  ≤ 200, 1  ≤ KIg , KId  , KIR  , KIm  ≤ 20, 0.1  ≤ KDg 

,KDd  , KDR  , KDm  ≤ 10, 

Tuned modified PID controller- I Gains: 50  ≤ KPg ,KPd  , 

KPR  , KPm  ≤ 300, 1  ≤ KIg , KId  , KIR  , KIm  ≤ 10, 0.1  ≤ KDg 

,KDd  , KDR  , KDm  ≤ 5, 1  ≤ Keg ,Ked  , KeR  , Kem  ≤ 50, 

Tuned modified PID controller – II Gains: 50  ≤ KPg ,KPd  , 

KPR  , KPm  ≤ 300, 1  ≤ KIg , KId  , KIR  , KIm  ≤ 10, 0.1  ≤ KDg 

,KDd  , KDR  , KDm  ≤ 5, 1  ≤ Keg ,Ked  , KeR  , Kem  ≤ 100, 

Tuned Variable structure sliding mode controller 

VSC/SMC/B-B Gains: 1  ≤ 0g , 0d  , 0R  , 0m  ≤ 10, 1  ≤  

1g , 1d  , 1R  , 1m   ≤ 50, 0.01  ≤ Kg , Kd  , KR  , Km  ≤ 1 
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Table 1. DC bus dynamic behavior comparison using the constant parameters conventional PID controller 

 The First Speed Track 
The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.85274 0.8819 0.8618 

DC bus current (PU) 0.72463 0.74817 0.7706 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.07353 0.07030 0.06916 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.08681 0.09954 0.08890 

DC System Efficiency 0.88027 0.873267 0.89690 

NMSE_VDC-bus 0.07544 0.06263 0.06575 

NMSE_m 0.08000 0.07681 0.07176 

PMDCM total controller Error etm 0.06760 0.05513 0.05150 

DC side GPFC Error etd 0.06204 0.0812 0.08045 

The diesel engine gen set total controller Error 

etg 
0.04719 0.04959 0.04890 

The diesel engine converter total controller 

Error etR 
0.05119 0.04249 0.05236 
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Table 2. DC bus dynamic behavior comparison using the constant parameters modified PID controller- I 

 The First Speed Track 
The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.905384 0.903496 0.892775 

DC bus current (PU) 0.72200 0.71977 0.719416 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.06112 0.062632 0.06590 

Maximum Transient DC Current – 

Over/Under Shoot (PU) 
0.0986 0.085243 0.082528 

DC System Efficiency 0.890201 0.891517 0.88194 

NMSE_VDC-bus 0.09717 0.08323 0.08091 

NMSE_m 0.06013 0.05022 0.0478 

PMDCM total controller Error etm 0.07613 0.08924 0.09714 

DC side GPFC Error etd 0.08899 0.07240 0.074800 

The diesel engine gen set total controller Error 

etg 
0.06355 0.064996 0.065998 

The diesel engine converter total controller 

Error etR 
0.051087 0.053814 0.055153 

Table 3. DC bus dynamic behavior comparison using the constant parameters modified PID controller – II 

 The First Speed Track 
The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.89615 0.91325 0.904000 

DC bus current (PU) 0.72549 0.74441 0.74225 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.06624 0.0655 0.05790 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.08577 0.09802 0.08502 

DC System Efficiency 0.904078 0.916877 0.897981 

NMSE_VDC-bus 0.051532 0.06109 0.059779 

NMSE_m 0.05488 0.06130 0.07716 

PMDCM total controller Error etm 0.07479 0.08187 0.08401 

DC side GPFC Error etd 0.0567 0.06634 0.06550 

The diesel engine gen set total controller Error etg 0.05402 0.054390 0.052790 

The diesel engine converter total controller Error 

etR 
0.044016 0.04346 0.042488 

Table 4. DC bus dynamic behavior comparison using the constant parameters Variable structure sliding mode controller 

VSC/SMC/B-B 

 The First Speed Track 
The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.904060 0.917020 0.895291 

DC bus current (PU) 0.76545 0.769594 0.769731 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.052925 0.054604 0.053089 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.09461 0.087336 0.081906 

DC System Efficiency 0.885737 0.906631 0.895666 

NMSE_VDC-bus 0.09512 0.08443 0.084672 

NMSE_m 0.05131 0.053548 0.053953 

PMDCM total controller Error etm 0.08521 0.095145 0.09422 

DC side GPFC Error etd 0.072338 0.70746 0.703462 

The diesel engine gen set total controller Error etg 0.062513 0.067513 0.069606 

The diesel engine converter total controller Error 

etR 
0.08856 0.086233 0.085740 
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Table 5. DC bus dynamic behavior comparison using ANN Controller 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.92747 0.932736 0.91131 

DC bus current (PU) 0.661466 0.67464 0.64627 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.0372 0.04186 0.05541 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.08575 0.07355 0.06083 

DC System Efficiency 0.916100 0.928253 0.926261 

NMSE_VDC-bus 0.03439 0.04827 0.05231 

NMSE_m 0.03793 0.02627 0.03146 

PMDCM total controller Error etm 0.04261 0.04200 0.04639 

DC side GPFC Error etd 0.02397 0.02416 0.02440 

The diesel engine gen set total controller Error etg 0.04437 0.04507 0.05522 

The diesel engine converter total controller Error 

etR 
0.03388 0.03978 0.03463 

Table 6. DC bus dynamic behavior comparison using FLC Controller 

 
The First Speed 

Track 

The Second Speed 

Track 
The Third Speed Track 

DC bus voltage (PU) 0.943860 0.94745 0.930581 

DC bus current (PU) 0.65611 0.64712 0.630216 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.03898 0.03126 0.02065 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.05658 0.04383 0.05014 

DC System Efficiency 0.926459 0.92890 0.937334 

NMSE_VDC-bus 0.04193 0.03022 0.02129 

NMSE_m 0.0192 0.02016 0.02024 

PMDCM total controller Error etm 0.02956 0.02154 0.02852 

DC side GPFC Error etd 0.06562 0.09179 0.07781 

The diesel engine gen set total controller Error etg 0.0337 0.02964 0.02928 

The diesel engine converter total controller Error 

etR 
0.02533 0.0260 0.02051 

Table 7. DC bus dynamic behavior comparison using the GA based Tuned conventional PID controller 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.96034 0.96062 0.95384 

DC bus current (PU) 0.55232 0.530199 0.52200 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.00463 0.004936 0.004112 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.00625 0.006094 0.00686 

DC System Efficiency 0.95008 0.94777 0.940201 

NMSE_VDC-bus 0.008980 0.007076 0.009717 

NMSE_m 0.00890 0.008819 0.008013 

PMDCM total controller Error etm 0.007843 0.008708 0.007613 

DC side GPFC Error etd 0.00808 0.009078 0.008899 

The diesel engine gen set total controller Error etg 0.003159 0.003974 0.003355 

The diesel engine converter total controller Error 

etR 
0.005447 0.006566 0.005087 
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Table 8. DC bus dynamic behavior comparison using the PSO based Tuned conventional PID controller 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.9669 0.97230 0.97563 

DC bus current (PU) 0.514 0.5425 0.53732 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.003996 0.003582 0.003519 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.005818 0.005555 0.005554 

DC System Efficiency 0.9514 0.9582 0.9545 

NMSE_VDC-bus 0.006834 0.006009 0.006485 

NMSE_m 0.007303 0.007419 0.007647 

PMDCM total controller Error etm 0.007809 0.007945 0.007844 

DC side GPFC Error etd 0.008160 0.008953 0.008946 

The diesel engine gen set total controller Error etg 0.002584 0.002487 0.002268 

The diesel engine converter total controller Error 

etR 
0.005116 0.005391 0.004967 

Table 9. DC bus dynamic behavior comparison using the GA based Tuned modified PID controller- I 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.96187 0.9861 0.9688 

DC bus current (PU) 0.63637 0.62814 0.64958 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.009881 0.009151 0.008854 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.007214 0.008397 0.007821 

DC System Efficiency 0.941726 0.933797 0.9428082 

NMSE_VDC-bus 0.008879 0.009372 0.00827 

NMSE_m 0.005380 0.007118 0.006406 

PMDCM total controller Error etm 0.005219 0.007699 0.006228 

DC side GPFC Error etd 0.006572 0.006135 0.00507 

The diesel engine gen set total controller Error etg 0.009807 0.006440 0.007512 

The diesel engine converter total controller Error 

etR 
0.003507 0.007476 0.003144 

 

Table 10. DC bus dynamic behavior comparison using the PSO based Tuned modified PID controller- I 

0 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.97079 0.97350 0.96469 

DC bus current (PU) 0.60940 0.61669 0.6103 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.008343 0.007736 0.009398 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.007109 0.007235 0.006118 

DC System Efficiency 0.9581 0.95622 0.95755 

NMSE_VDC-bus 0.008598 0.007157 0.009750 

NMSE_m 0.007527 0.006477 0.007515 

PMDCM total controller Error etm 0.006636 0.005898 0.004823 

DC side GPFC Error etd 0.008887 0.004256 0.009305 

The diesel engine gen set total controller Error etg 0.008107 0.007857 0.003648 

The diesel engine converter total controller Error 

etR 
0.008215 0.007545 0.00974 
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Table 11. DC bus dynamic behavior comparison using the GA based Tuned modified PID controller – II 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.95337 0.96469 0.96299 

DC bus current (PU) 0.6243 0.61953 0.624408 

Maximum Transient DC Voltage Over/Under 

Shoot (PU) 
0.006114 0.0054632 0.0054971 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.008818 0.008899 0.007111 

DC System Efficiency 0.93278 0.94371 0.95523 

NMSE_VDC-bus 0.004069 0.005516 0.004373 

NMSE_m 0.006497 0.006859 0.005911 

PMDCM total controller Error etm 0.001145 0.0013194 0.001645 

DC side GPFC Error etd 0.005925 0.0052439 0.0059193 

The diesel engine gen set total controller Error etg 0.004696 0.004942 0.0041476 

The diesel engine converter total controller Error 

etR 
0.007099 0.0066789 0.0069821 

Table 12. DC bus dynamic behavior  comparison using the PSO based Tuned modified PID controller – II 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.96841 0.964346 0.964428 

DC bus current (PU) 0.619458 0.618023 0.618519 

Maximum Transient DC Voltage Over/Under Shoot 

(PU) 
0.007662 0.009669 0.007012 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.00754164 0.00753175 0.00759818 

DC System Efficiency 0.943307 0.953824 0.948052 

NMSE_VDC-bus 0.005423 0.006396 0.006727 

NMSE_m 0.005123 0.0054443 0.0057547 

PMDCM total controller Error etm 0.0016667 0.0015124 0.0018915 

DC side GPFC Error etd 0.0063503 0.0064763 0.0065155 

The diesel engine gen set total controller Error etg 0.0054647 0.005347 0.0052206 

The diesel engine converter total controller Error etR 0.0073583 0.0074459 0.008394 

Table 13. DC bus dynamic behavior comparison using the GA based Tuned Variable structure sliding mode controller 

VSC/SMC/B-B 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.964652 0.97417 0.964182 

DC bus current (PU) 0.60878 0.614695 0.613914 

Maximum Transient DC Voltage Over/Under Shoot 

(PU) 
0.0085931 0.009302 0.008437 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.002005 0.00292 0.0028122 

DC System Efficiency 0.9404 0.948156 0.94302 

NMSE_VDC-bus 0.0073133 0.007304 0.008248 

NMSE_m 0.0074627 0.0076308 0.008558 

PMDCM total controller Error etm 0.008187 0.009167 0.007663 

DC side GPFC Error etd 0.003062 0.004618 0.004337 

The diesel engine gen set total controller Error etg 0.0047025 0.005121 0.004377 

The diesel engine converter total controller Error etR 0.002879 0.003265 0.002328 
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Table 14. DC bus dynamic behavior comparison using the PSO based Tuned Variable structure sliding mode controller 

VSC/SMC/B-B 

 
The First Speed 

Track 

The Second Speed 

Track 

The Third Speed 

Track 

DC bus voltage (PU) 0.97347 0.974602 0.950341 

DC bus current (PU) 0.604077 0.607674 0.605076 

Maximum Transient DC Voltage Over/Under Shoot 

(PU) 
0.0073109 0.007259 0.008571 

Maximum Transient DC Current – Over/Under 

Shoot (PU) 
0.004746 0.005987 0.0047885 

DC System Efficiency 0.932558 0.930708 0.9327892 

NMSE_VDC-bus 0.004941 0.005854 0.0052055 

NMSE_m 0.0065287 0.006309 0.007071 

PMDCM total controller Error etm 0.005095 0.0048638 0.0052238 

DC side GPFC Error etd 0.0072358 0.0074294 0.007769 

The diesel engine gen set total controller Error etg 0.0069206 0.007013 0.0071823 

The diesel engine converter total controller Error etR 0.005167 0.0053836 0.0052152 
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Fig. 11. Tri-loop error driven self regulating self adjusting dynamic controller for the common DC side - GPFC Scheme 
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Fig. 12. Tri-loop error driven self regulating self adjusting dynamic controller for the diesel engine generator set 
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Fig. 13. Tri-loop error driven self regulating self adjusting dynamic controller for dynamic speed control PMDC motor drive 
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Fig. 14. Tri-loop error driven self regulating self adjusting firing angle α- controller for Diesel AC side rectifier scheme 

et

KI

+
+

Vc



d/dt

KP

KD

+

 

Fig. 15. Conventional self tuned PID controller block 

diagram. 
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Fig. 16. Weighted modified self tuned PID controller- I 

block diagram. 
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Fig. 17. Weighted modified self tuned PID controller – II 

block diagram. 
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Fig. 18. VSC/SMC self tuned sliding mode controller 

block diagram. 

 

Fig. 19. EV-PMDC Motor Speed response for the first 

speed track using GA based tuned Tri-loop conventional 

PID controller 

 

Fig. 20. EV-PMDC Motor Speed response for the first 

speed track using PSO based tuned Tri-loop conventional 

PID controller 

 

Fig. 21. EV-PMDC Motor Speed response for the Second 

speed track using GA based tuned Tri-loop conventional 

PID controller 

 

Fig. 22. EV-PMDC Motor Speed response for the Second 

speed track using PSO based tuned Tri-loop conventional 

PID controller 
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Fig. 23. EV-PMDC Motor Speed response for the third 

speed track using GA based tuned Tri-loop conventional 

PID controller 

 

Fig. 24. EV-PMDC Motor Speed response for the third 

speed track using PSO based tuned Tri-loop conventional 

PID controller 

 

Fig. 25. EV-PMDC Motor Speed response for the first 

speed track using GA based tuned Tri-loop modified PID 

controller- I 

 

Fig. 26. EV-PMDC Motor Speed response for the first 

speed track using PSO based tuned Tri-loop modified PID 

controller- I 

 

Fig. 27. EV-PMDC Motor Speed response for the Second 

speed track using GA based tuned Tri-loop modified PID 

controller- I 

 

Fig. 28. EV-PMDC Motor Speed response for the Second 

speed track using PSO based tuned Tri-loop modified PID 

controller- I 
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Fig. 29. EV-PMDC Motor Speed response for the third 

speed track using GA based tuned Tri-loop modified PID 

controller- I 

 

Fig. 30. EV-PMDC Motor Speed response for the third 

speed track using PSO based tuned Tri-loop modified PID 

controller- I 

 

Fig. 31. EV-PMDC Motor Speed response for the first 

speed track using GA based tuned Tri-loop modified PID 

controller- II 

 

Fig. 32. EV-PMDC Motor Speed response for the first 

speed track using PSO based tuned Tri-loop modified PID 

controller- II 

 

Fig. 33. EV-PMDC Motor Speed response for the Second 

speed track using GA based tuned Tri-loop modified PID 

controller- II 

 

Fig. 34. EV-PMDC Motor Speed response for the Second 

speed track using PSO based tuned Tri-loop modified PID 

controller- II 
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Fig. 35. EV-PMDC Motor Speed response for the third 

speed track using GA based tuned Tri-loop modified PID 

controller- II 

 

Fig. 36. EV-PMDC Motor Speed response for the third 

speed track using PSO based tuned Tri-loop modified PID 

controller- II 

 

Fig. 37. EV-PMDC Motor Speed response for the first 

speed track using GA based tuned Tri-loop Variable 

structure sliding mode controller VSC/SMC/B-B 

 

Fig. 38. EV-PMDC Motor Speed response for the first 

speed track using PSO based tuned Tri-loop Variable 

structure sliding mode controller VSC/SMC/B-B 

 

Fig. 39. EV-PMDC Motor Speed response for the Second 

speed track using GA based tuned Tri-loop Variable 

structure sliding mode controller VSC/SMC/B-B 

 

Fig. 40. EV-PMDC Motor Speed response for the Second 

speed track using PSO based tuned Tri-loop Variable 

structure sliding mode controller VSC/SMC/B-B 
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Fig. 41. EV-PMDC Motor Speed response for the third 

speed track using GA based tuned Tri-loop Variable 

structure sliding mode controller VSC/SMC/B-B

 

Fig. 42. EV-PMDC Motor Speed response for the third 

speed track using PSO based tuned Tri-loop Variable 

structure sliding mode controller VSC/SMC/B-B 

 

0 10 20 30
-0.5

0

0.5

1
speed curve

Time(sec)

s
p
e
e
d
(P

U
)

0 10 20 30
0

1

2

3

4
x 10

-4 Speed Error curve

Time (sec)

S
p
e
e
d
 E

rr
o
r

0 10 20 30
-6

-4

-2

0

2
x 10

-4 Current Error curve

Time (sec)

C
u
rr

e
n
t 

E
rr

o
r

0 10 20 30
-2

0

2

4
x 10

-4 Global Error Curve

Time (sec)

G
lo

b
a
l 
E

rr
o
r

0 10 20 30
-0.5

0

0.5

1
speed curve

Time(sec)

s
p
e
e
d
(P

U
)

0 10 20 30
0

1

2

3

4
x 10

-4 Speed Error curve

Time (sec)

S
p
e
e
d
 E

rr
o
r

0 10 20 30
-6

-4

-2

0

2
x 10

-4 Current Error curve

Time (sec)

C
u
rr

e
n
t 

E
rr

o
r

0 10 20 30
-2

0

2

4
x 10

-4 Global Error Curve

Time (sec)

G
lo

b
a
l 
E

rr
o
r


