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Abstract- In recent years, Renewable energy has covered a growing portion of the global electrical power demand. Microgrids 

are gaining popularity as a promising technology in order to include renewable energy sources in the distribution system. These 

resource integrations, which include solar arrays, wind turbines, diesel generators, and battery storage systems, combined with 

load demand. The efficient integration of these DGs in a microgrid faces several obstacles, including the accuracy of energy 

predictions for renewable energy sources such as wind and solar, energy management, and economic dispatch (ED). depending 

on the data of renewable energy output and load forecasting in microgrid achieving the optimization of microgrid dispatch. In 

this paper, a system that relies on the machine learning algorithm is implemented to forecast. support vector regression (SVR) is 

a regression model that has been used for optimization. SVR is a type of support vector machine that can learn regression 

functions and is an extension of the support vector machine classification method. Enhance the precision of energy forecasts so 

that the electrical grid can run more efficiently. MIQP (mixed-integer quadratic programming) is used to define the whole 

problem, which can be solved quickly via Gurobi Optimizer. 

Keywords Energy management, Microgrid, Machine learning, Support vector machine, Quadratic programming. 

 

1. Introduction 

In order to respond to climate change, the need for power 

is fast growing due to globalization and industrialization [1]. 

Renewable energy sources, such as wind and solar, are 

becoming more significant all around the world [ 2]. They are 

frequently referred to as negative loads due to the intermittent 

nature of weather [3]. Over the previous several years, a major 

integration of Distributed Energy Resources (DERs), 

involving renewable energy sources and storage units, has 

been recorded. Because renewable energy is inherently 

unpredictable, researchers have discovered that a high 

penetration of it could weaken the grid and possibly cause 

blackouts. Microgrids have been promoted as being one of the 

possible solutions to this challenge. [4]. The microgrid is a 

single controlled item that combines numerous distributed 

power, load, energy storage devices, and control devices to 

provide both electrical and thermal energy to the consumer. 

Microgrid technology has emerged as an effective proper 

solution for maximizing the use of distributed energy [5], [6]. 

The efficient integration of these DGs in a microgrid faces 

several obstacles, including the accuracy of energy forecasting 

for green power sources like solar and wind, energy 

management, and economic dispatch (ED). 

  

In both grid-tied and islanded modes of operation, an 

Energy Management System (EMS) is necessary to regulate 

power flow and balance supply to load in a microgrid [7]. The 

two most common reasons for a microgrid to go into 

autonomous mode are transmission maintenance and 

transmission feeder failures [8]. The economic dispatch (ED) 

problem is concerned with determining the power outputs of 

online producing units in order to meet system load at the 

lowest feasible cost while meeting system restrictions. [9]. 

Static dispatch and dynamic dispatch are two types of 

economic power system dispatch. [2]. In static economic 

dispatch, the best price of a test model is determined for a 

single demand [9]. Because it not only searches for minimum 

operating cost in a scheduling loop but also includes multiple 

various distributed generators (DG) throughout numerous 

periods, the Dynamic Economic Dispatch issue (DED) must 

fulfill the system's operational demands in real time [11], [1].   

A large number of algorithms, including mixed-integer 

linear programming and meta-heuristic methods like particle 

swarm optimization and genetic algorithm, sequential 

quadratic programming, and interior-point algorithm, have 

been proposed recently because of the multi-faceted 

complexity of the microgrid UC & ED issue [12], [13]. Mixed 

integer quadratic programming (MIQP) is proposed for 

solving the UC and ED problems for its high efficiency and 
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modelling flexibility, and the availability of promising 

commercial solutions [12], [14], [15].  

Based on the data of renewable energy output and load 

forecasting in microgrid achieving the optimization of 

microgrid dispatch. As a result, energy prediction is vital in 

the electricity sector. Accurate power load forecasting is 

essential to decreasing energy consumption, reducing the 

price of power generation, and increasing social and economic 

merits.  [16]. So that solar and wind energy resources can be 

utilized to their full potential Accurate resource forecasting is 

critical [17]. Machine learning (ML), a type of artificial 

intelligence, has gained a lot of traction in recent years [4].  

Solar and wind energy resources have been predicted using a 

variety of methodologies. The effectiveness of the support 

vector machine modelling technique was shown to be 

preferable to other modelling approaches in terms of 

forecasting. The support vector machine is quick, easy to 

operate, and produces precise results. Support vector machine 

models, according to studies based on critical analysis, can 

produce significantly higher precision than other models [17]. 

The contributions of this paper are: 

• A formulation of the energy management issue with 

renewable microgrids, storage devices, and a diesel 

generator is described. 

• Employing support vector regression algorithm for solar 

power, wind power and, load demand forecasting. 

• The grid search of the SVR’s hyper-parameters is 

conducted to find out the optimal penalization parameter 

(C) and Gamma by using a cross-validation technique 

• Implementation of the proposed method to obtain the 

optimal solution to the problem of ED problem with 

quadratic objective cost functions and constraints 

The paper is arranged as follows: Microgrid modelling is 

described in Section 2. Section 3 introduces the problem. 

Section 4 presents the suggested optimization technique. the 

outputs of simulation are shown in Section 5. Finally, Section 

6 provides the work to a conclusion. 

   

In this paper, the Microgrid consists of the PV array 

model, wind turbine, energy storage batteries, a diesel 

generator, and fixed and variable loads as shown in Fig 1. 

 
    

2.1.  Photovoltaic Model  

The photovoltaic effect is a semiconductor-based 

mechanism for turning the sun's radiation into a direct current. 

[18], [19]. The number of cells in a PV module, the type of 

cells, and the total surface area of the cells all impact the 

module's power output. The quantity of energy generated by 

solar panels can be determined using the size of solar panels 

distributed in our system and the global irradiance provided to 

every hour of the day published in [20]. This paper uses the 

sub-hourly (5-minute) weather data. Using the following 

equation: 

𝑃 = 𝐼𝑟𝑟 ∗ 𝐴𝑝𝑣 ∗ 𝐾𝑡                                                            (1) 

Where:  

- P [W]: Power output  ,  𝐼𝑟𝑟 [W/m2]: Irradiance  , 𝐴𝑝𝑣 [m2]: 

Solar panels surface  

- 𝐾𝑡 [%]: Global efficiency of the PV solar installation  

2.2.  Wind Turbine 

The kinetic energy (wind energy) in the air is converted 

into electricity by a wind turbine. According to meteoro -

logical data conditions [20], Cairo is not an especially windy 

area. As a result, a low start-up wind speed becomes one of 

the most important factors to consider when choosing a wind 

turbine. Due to these considerations, the following wind 

turbine was selected in the literature [21]. 

The power of the wind can be defined as [22]:  

𝑃 =
1

2
∗ ρ ∗ 𝐴 ∗ 𝑉3 ∗ 𝐶𝑝                                            (2) 

2. Microgrid Modelling

Fig. 1. Layout of Microgrid
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Where: - A [m2]: swept area at speed V [m/s], 𝜌 [kg/m3]: 

air density. - Cp: coefficient of power of rotor, the fraction of 

the wind’s power that is obtained by the blades. 

 2.3.  Battery  

The Microgrid's batteries serve a dual purpose. One of its 

functions is to serve as a backup or UPS system, supplying the 

loads in the event of a power outage. The second function is 

to reduce the Microgrid's operating costs by charging the 

batteries with surplus PV or wind power and releasing them to 

decrease the amount of energy required by the auxiliary 

generators. The system's battery capacity is 2500 KWh. 

 2.4.  Auxiliary Generators  

Because RERs have alternate output characteristics, they 

typically limit user-side demand when connected to the utility 

grid. In general, DG is a critical component in the design of a 

microgrid network because it has several advantages in terms 

of emergency reserve power, system dependability, time-

consuming power, prime power, and ongoing providing power 

[23]. Generators of various sizes are available from the chosen 

generator supplier. The 60 kw diesel generator was chosen. 

 2.5.  Load 

 The load demand for MG consists of fixed and variable 

loads, resulting in a total load. The load consists of 12 days. 

loads of the third day are the same as loads of the fourth, ninth 

and tenth days, and loads of the fifth day are the same as loads 

of the sixth and twelfth day, and loads of the seventh day are 

the same as loads of the eighth day as shown in fig 2. 

  

 
      

   

The forecasting of these renewable resources has 

become a vital tool in the operation of power systems and 

markets. This paper uses support vector regression.  (SVR) is 

a machine learning technique that relies on the statistical 

learning principles [16]. The primary concept behind this 

approach is to identify a hyper-plane by using nonlinear 

3. Problem Formulation

Fig. 2. Values of total load demand
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mapping to turn a nonlinear input region into a high-

dimensional area. SVMs are commonly used for 

classification, pattern recognition, and regression. they 

outperform other procedures,such as conventional statistical 

models that were investigated previously.  Support vector 

regression is the SVM used to approximate functions and 

regression.Several essential functions of the kernel are utilized 

in SVM models.  Different types of functions including 

polynomial (Poly), exponential radial basis function (ERBF), 

radial basis function (RBF), sigmoid, and linear are 

investigated in the literature [17], [24]. Optimization and the 

kernel used in SVR forecasting are presented. The regression 

model can be developed, as demonstrated in Equation (3): 

γ = ωT𝜃(𝜒) + 𝑏                                                                         (3) 

where ω is the weight vector, b is the bias term and θ(χ) is a 

nonlinear mapping function that translates χ onto a higher-

dimensional feature space. To get ω, it is essential  to reduce 

the following regularized expression, which can be described 

in Equation (4), with the constraint of Equations (5-7). 

min {
1

2
ω2 + 𝐶 ∑ ({𝜉𝑖 + 𝜉𝑖

(∗)})𝑁
𝑖=1 }                                          (4) 

γ𝑖 − {(ωT𝜃(𝜒) + 𝑏)} ≤ 𝜓 + 𝜉𝑖   i = 1.2. … . N                    () 

𝜉𝑖 . 𝜉𝑖
(∗) ≥ 0   i =  1.2. … . N                                                 () 

where 𝜓 is equal to the function approximation 

precision positioned on the training data samples. 𝜉𝑖 .and 

𝜉𝑖
(∗) symbolize the positive slack variables and C is the error's 

penalization parameter, which is used to manage the trade-off 

between regularisation and empirical risk. Ultimately, the 

SVR is solved by using  Lagrange multipliers 𝛿𝑖 . and 𝛿𝑖
(∗)

 

and utilizing the constraints, which have the following form: 

f(χ) = ∑ (δi − δi
(∗)

)KN
i=1 (χ. χi) + b                                (7) 

Kernel functions are also used to get the best results on non-

linear separable data. A kernel function may be thought of as 

a pattern similarity measure, and it's very beneficial for non-

linear regression problems. 

In our studies, we use an RBF-kernel: 

K(χ. χ′) = exp (−
‖χ−χ′‖

2σ2 ) = exp(−γ‖χ − χ′‖2)                (8) 

Here, γ > 0 

A flowchart for the SVR method is shown in fig.3 [25]. 

 

Fig. 3. Flow chart of SVM model with search algorithm. 

Based on the data of renewable energy output and 

load forecasting in microgrid achieving the optimization of 

microgrid dispatch. The core aim of the ED issue is to arrange 

the generation of committed power sources in a method to 

minimize operational costs while following all system 

restrictions. 

3.1.  Objective Functions 

3.1.1 Minimization of the Economic Dispatch Cost  

The objective function of ED problem is as follows [26], [1], 

[9],[27]: 

Minimize 𝐹𝑇 = ∑ 𝐹𝑖(𝑃𝑖)𝑛
𝑖=1                                                   (9) 

Where  

𝑃𝑖  is the active output power of the ith DER, 𝐹𝑖(𝑃𝑖) is the 

generation cost of the ith DER, and the Cost functions can be 

expressed as: 

𝐹𝑇= 𝐹𝐷𝑖𝑒𝑠𝑒𝑙 + 𝐹𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒                                          (10) 
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The most common cost function of each generator can be 

constructed as a quadratic cost function as follows: 

𝐹𝑖(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2                                                 (11) 

Where  

𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are three cost coefficients of the ith DER, and 

they can be expressed as: 

𝐹𝑖(𝑃𝑖) = 2.6975 + 1.11153𝑃𝐷𝑖𝑒𝑠𝑒𝑙 + 0.05𝑃𝐷𝑖𝑒𝑠𝑒𝑙
2  +

0.1154 + 0.7975𝑃𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒     +

0.1409𝑃𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2                                                    (12) 

3.2 Constraints  

In generating capacity restriction, the power output of each 

producing  unit should be between its minimum and 

maximum limits. 

 

Pi
min ≤ Pi ≤  Pi

max                                                    (13) 

Where 𝑃𝑖𝑚𝑖𝑛 and 𝑃𝑖𝑚𝑎𝑥 are the minimum and maximum 

boundaries of the ith DER, respectively, which has the 

following form:  

0 ≤ PDiesel ≤  PDiesel
max  

0 ≤ Pbatterydischarge ≤  Pbattery discharge
max                            (14) 

PDiesel+Pbatterydischarge =  net load 

3.2.1 System power balance 

ED issue is subjected to the power balance and generating 

capacity constraints. In power balance constraints, the total 

energy production must fulfill overall system consumption. In 

this paper, the transmission system loss is ignored for all test 

systems. It can be expressed as follows: 

∑ 𝑃𝑖 = 𝑃𝐷 𝑛
𝑖=1                                                                       (15)  

Where 𝑃𝐷 is the total system demand 

And net load for power dispatch can be expressed as:  

net load = 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑆𝑜𝑙𝑎𝑟 − 𝑃𝑤𝑖𝑛𝑑                                      (16) 

where 𝑃𝑙𝑜𝑎𝑑 . 𝑃𝑆𝑜𝑙𝑎𝑟  𝑎𝑛𝑑 𝑃𝑤𝑖𝑛𝑑  are power predict of  Solar 

,wind and load 

4. PROPSED OPTIMIZATION ALGORITHM  

In a mixed integer programming (MIP) problem, both 

integer and continuous variables can be used. A Mixed Integer 

Quadratic Program is a problem in which the objective 

function has a quadratic term. When the cost function is 

quadratic and the restrictions are linear, (MIQP) successfully 

optimizes the objective function to obtain the optimal 

dispatch. This paper uses the Gurobi MIP platform to tackle 

problems with a quadratic objective [28], [ 29]. 

Minimize  
1

2
 xT Q x + qTx 

Subject to  𝐴𝑒𝑞   x = 𝑏𝑒𝑞 (linear constraints) 

l ≤ x ≤u (bound constraints) 

Some or all of x must be integers (integrality constraints) 

where  

X: vector of n variables 

Q: n × n-dimensional real symmetric matrix  

q: a real-valued, n-dimensional vector c 

𝐴𝑒𝑞: real matrix ,Linear equality constraints. 

𝑏𝑒𝑞: real vector ,Linear equality constraints 

l , u: upper and lower bounds of the of the ith DER, respectively. 

 

A flowchart of the planned strategy is shown in Fig 4  

 

Fig. 4. Flowchart of the suggested method to solve ED. 
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The configuration of the tested MG is shown in Figure 1. 

The optimized EMS is used to solve the problem of energy usage for 

an MG during a 24-hour period. in this case, The MG has been 

isolated from the utility  and is operating in an autonomous mode. 

The load profile of this scenario is shown in Figure 2. Throughout 

this research, the proposed algorithm will have to decide the optimal 

way to dispatch of battery and diesel generator. The proposed method 

has a number of important parameters that should be selected before 

its execution in order to get  the optimum solution. 

All the simulation studies were performed on 2.8-

GHz i3 PC with 8 GB of RAM using ANACONDA and 

Gurobi Optimizer. The data set is split into two sections: the 

test and training. Training data includes Day 1 and Day 2, 

while the test set involves data from day 4 to day 12. The data 

description of MG is illustrated in table 1.

Table 1. statistical data description of MG 

 Temp 

(°C) 

Load  

(kw) 

Radiation 

(W/m2) 

Solar Power 

(kw) 

Wind speed 

(m/s) 

Wind power 

(kw) 

Count 3450 3450 3450 3450 3450 3450 

Mean 22.097 166.088 236.816 177.612 3.596 15.771 

STD 7.901 129.231 319.255 239.441 1.782 34.675 

min 6.500 0.260 0.000 0.000 0.300 0.004 

25% 15.900 77.446 0.000 0.000 2.400 2.392 

50% 22.400 132.670 8.000 6.000 3.100 5.156 

75% 28.1000 214.383 484.000 363.000 4.200 12.824 

Max 37.700 626.801 1011.000 758.250 12.000 299.103 

  

There are a variety of approaches to explore feature significance. A correlation graphs are a simple way to study correlation as 

shown in fig 5. 

 

Fig. 5. correlation graph for Data of MG 

In this paper, the SVR is optimized for PV, wind 

power, and load forecasting. The grid search of the SVR’s 

hyper-parameters is conducted to find out the optimal C 

(regularization parameter) and Gamma. In other words, 

searching for SVR’s parameters give a minimum Root mean 

squared error (RMSE) and a higher R-squared score. A cross-

validation strategy is used to create the search grid. The 

optimum parameter of   C and gamma are 50, 0.01 respectively 

as shown in table 2. 

5. Results and Dicussion
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Table 2. The optimum parameter of   C and gamma of SVR 

Kernel C Gamma 
Load Forecasting Wind Power Forecasting Solar Power Forecasting 

RMSE R^2 RMSE R^2 RMSE R^2 

RBF 

0.001 0.01 27.99 -4.7 10.61 -0.09 41.06 -0.45 

0.001 0.001 28.48 -4.9 10.70 -0.11 42.43 -0.556 

0.001 0.0001 28.5 -5.02 10.71 -0.117 42.57 -0.56 

0.001 1e-5 28.54 -5.02 10.71 -0.118 42.59 -0.56 

0.1 0.01 3.70 0.89 8.26 0.33 4.60 0.981 

0.1 0.001 22.80 -2.8 9.72 0.079 26.88 0.37 

0.1 0.0001 27.97 -4.7 10.60 -0.096 40.96 -0.45 

0.1 1e-5 28.48 -4.9 10.70 -0.11 42.43 -0.556 

10 0.01 0.50 0.9981 2.88 0.91 0.76 0.999 

10 0.001 1.28 0.98 5.12 0.744 0.94 0.999 

10 0.0001 3.43 0.91 8.21 0.342 4.33 0.983 

10 1e-5 22.78 -2.8 9.71 0.08 26.78 0.379 

25 0.01 0.35 0.999 2.56 0.936 0.63 0.999 

25 0.001 0.64 0.996 3.59 0.874 0.77 0.999 

25 0.0001 2.37 0.95 7.50 0.45 3.00 0.992 

25 1e-5 14.43 -0.53 9.00 0.209 11.63 0.88 

50 0.01 0.31 0.999 2.48 0.939 0.61 0.999 

50 0.001 0.50 0.998 3.10 0.906 0.69 0.999 

50 0.0001 1.81 0.975 6.60 0.57 1.62 0.997 

50 1e-5 5.72 0.75 8.59 0.280 5.76 0.971 

100 0.01 0.32 0.999 2.44 0.941 0.62 0.999 

100 0.001 0.42 0.998 2.81 0.922 0.65 0.999 

100 0.0001 1.24 0.988 5.14 0.742 0.87 0.999 

100 1e-5 3.43 0.913 8.21 0.342 4.33 0.983 

1000 0.01 0.31 0.999 2.35 0.94 0.70 0.999 

1000 0.001 0.32 0.999 2.35 0.946 0.65 0.999 

1000 0.0001 0.43 0.998 2.78 0.924 0.64 0.999 

1000 1e-5 1.23 0.988 5.17 0.739 0.89 .999 

5.1 Forecasting Results 

The comparison of actual and forecasted solar power, 

wind power, and load demand values is depicted in Fig 6-8 As 

we stated , the suggested  model is trained on day 1,2 and test 

data on day 5. the weather data input is sub-hourly (5-minute). 

5.1.1 Forecasting of Solar Power  

 
Fig. 6. Actual and forecasted of solar power values. 
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5.1.2 Forecasting of Wind Power  

 

Fig .7. Actual and forecasted of wind power values. 

5.1.3 Forecasting of Load Demand  

 

Fig .8. Actual and forecasted of load demand values. 
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5.2 Economic Dispatch Analysis  

The solution to the problem of finding the lowest cost 

in microgrid energy dispatch was presented in Figure 1 which 

corresponds to the case study and was based on the Economic 

dispatch algorithm with the gurobi solver through quadratic 

regression, which produced the results displayed in Fig 9,10. 

5.2.1 Economic dispatch for battery 

 

Fig .9. cost analysis of economic dispatch for battery 

5.2.2 Economic Dispatch for Diesel Generator 

 

Fig. 10. Cost analysis of economic dispatch for diesel generator 
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Conclusion: 

Microgrids are generally composed of PV solar, wind turbine, 

diesel generator, battery energy storage, load demand, and 

microgrid energy management system. Efficient integration of 

these DGs in a microgrid, depends on the accuracy of energy 

forecasts of dependent renewable energy sources, i.e., wind 

and solar, energy management, and economic dispatch (ED). 

These exact projections will enable the most efficient use of 

sustainable and renewable energy sources, reducing the 

negative impacts of fossil fuel consumption. This paper 

investigated using support vector regression for solar power, 

wind power, and load demand forecasting. Because of its 

predictability and accuracy, this model has gained the 

attention of many researchers across the world and is now 

widely used.  The best accuracy and minimum RMSE results 

by the SVR algorithm are achieved by using the parameter of   

C and gamma 50, 0.01. In this paper mixed integer quadratic 

program (MIQP) for solving ED problems with quadratic cost 

functions and constraints are linear has been researched. The 

obtained results by the suggested  algorithm in 24 hr periods 

of analysis in the study. Simulation results of the proposed 

modelling under ANACONDA and Gurobi Optimizer are 

presented. 

ACKNOWLEDGEMENTS  

Author thanks Professor. Mohamed Mehnna and Associate 

Prof. Salah Kamal in providing scientific support and advice 

REFERENCES 

[1] M.Ishraque,S.Shezan,M.Rashid ,A.Bhadra, MD.Hossain 

,R. Chakrabortty , M. Ryan ,S. Fahim , S.Sarker , S.Das 

“Techno-Economic and Power System Optimization of a 

Renewable Rich Islanded Microgrid Considering 

Different Dispatch Strategies,” IEEE Access., vol. 9, pp. 

77325-77340,2021,doi: 10.1109/ACCESS.2021.3082538. 

[2] W. Hongbin, L. Xingyue, and D. Ming, “Dynamic 

economic dispatch of a microgrid: Mathematical models 

and solution algorithm,” International Journal of Electrical 

Power & Energy Systems., vol.63, pp.336–346,2014, doi:  

10.1016/j.ijepes.2014.06.002. 

[3] S. Ramabhotla , and S. Bayne, “Cost and availability 

optimization of wind energy with distributed energy 

resources of a microgrid,” Wind Engineering., vol. 43, no. 

6, pp.559-572, 2019; doi:10.1177/0309524X18820019. 

[4] T. Levent, P. Preux, E.  Pennec, J. Badosa, G. Henri and 

Y. Bonnassieux, “Energy Management for Microgrids: A 

Reinforcement Learning Approach,” IEEE PES 

Innovative Smart Grid Technologies Europe (ISGT-

Europe)., pp. 1-5, 2019, doi: 

10.1109/ISGTEurope.2019.8905538. 

[5] H. Xiaobo, X. Fei, X. Zongze, C. Peixian, D. Zhuo, Y. 

Zhixiong and S.Li., “Dynamic Economic Optimal 

Dispatch of Microgrid Based on Improved Differential 

Evolution Algorithm,” IOP Conference Series. Earth and 

Environmental Science.2018, Pp.042143, doi: 

10.1088/1755-1315/170/4/042143. 

[6] A.Bani-Ahmed, A. Nasiri, I.Stamenkovic“Foundational 

Support Systems of the Smart Grid: State of the Art and 

FutureTrends,”ijSmartGri.,vol.2,No.1,pp.112,2018,doi:10

.20508/ijsmartgrid.v2i1.9.g6 

[7] M. Ali, “Energy management system of a microgrid with 

distributed generation,” M.S. thesis, Dept. Electrical and 

Computer Eng., Univ of Ontario Institute of Technology., 

Oshawa, Canada, 2019. 

[8] F. Katiraei, R. Iravani, N. Hatziargyrious, and S. Amires,” 

Microgrids: Control and Management,” IEEE Power & 

Energy Magazine, vol. 6, no. 3, pp. 74-98, 2008. 

[9] A.A. Nahid, J. Shahram, H. Shayanfar, and B. Farnaz, 

“Solving Economic Dispatch Problem With Cubic Fuel 

Cost Function by Firefly Algorithm,” ICTPE conference 

on Technical Physical Problems of Power 

Engineering,2012. pp.1-5. 

[10] N. Aamir, S. Nasir, M. Ehtasham, and K. Umair, “An 

efficient global technique for solving network constrained 

static and dynamic Economic Dispatch problem,” Turkish 

Journal of Electrical Engineering and Computer Sciences, 

vol. 25, pp. 73-82. ,2017, doi:10.3906/elk-1503-236. 

[11] S. Daniel, M. Hertwin, A.Omar, and T. Rubén, 

“Optimal Economic Dispatch in Microgrids with 

Renewable Energy Sources,” Energies. vol. 12.pp. 

181,2019, doi: 10.3390/en12010181. 

[12] N. Mohsen, B. Martin, T. Stefan, “Optimization of 

unit commitment and economic dispatch in microgrids 

based on genetic algorithm and mixed integer linear 

programming,” Applied Energy, Vol.210, 2017, doi: 

10.1016/j.apenergy.2017.07.007. 

[13] Y. DU, W. PEI, N. CHEN, “Real-time microgrid 

economic dispatch based on model predictive control 

strategy,” J. Mod. Power Syst. Clean Energy, vol.5, 

pp.787–796 ,2017, doi:10.1007/s40565-017-0265-4. 

[14] I.Kantor, J. Robineau, H. Bütün, and F. Maréchal, “A 

Mixed-Integer Linear Programming Formulation for 

Optimizing Multi-Scale Material and Energy Integration,” 

Front. Energy Res, vol. 8, pp.49,2020, doi: 

10.3389/fenrg.2020.00049. 

[15] S. Ruiz-Álvarez, and  J. Espino“Multi-Objective 

Optimal Sizing Design of a Diesel-PV-Wind-Battery 

Hybrid Power System in Colombia,”ijSmartGri., vol. 2 

No.1,pp.49-

57,2018,doi:10.20508/ijsmartgrid.v2i1.12.g13 

[16] K.Waqas, K.  Ho, K. Young, P. Su, B. Yungcheol, 

and L.  Joon, “Machine Learning-Based Approach to 

Predict Energy Consumption of Renewable and 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
E. I. El-sayed et al., Vol.12, No.2, June 2022 

 

740 
 

Nonrenewable Power Sources,” Energies. Vol.13, 

pp.4870,2020, doi: 10.3390/en13184870. 

[17] Z. Alireza, A. Mohammed, R. Saidur, “Application 

of support vector machine models for forecasting solar and 

wind energy resources: A review,” Journal of Cleaner 

Production, Vol.199, pp. 272-285,2018, doi: 

10.1016/j.jclepro.2018.07.164. 

[18] S.  EL-Sayed, E. Okasha, “Impact of Photovoltaic 

Tied to Electrical Grid System On Power Quality,” Journal 

of Electrical and Electronic Engineering. Vol. 5, pp. 23-

32,2017, doi: 10.11648/j.jeee.20170502.11. 

[19] A.Harrouz, A.Temmam,and M.Abbes “Renewable 

Energy in Algeria and EnergyManagement 

Systems,”ijSmartGrid., vol. 2 No.1, pp. 34-

39,2018,doi:10.20508/ijsmartgrid.v2i1.10.g9 

[20] Solcast’s API Toolkit (2020). [Online].Available: 

https://solcast.com/solar-data-api/api-toolkit/. 
(Accessed: Feb. 22, 2021). 

[21] Wind-turbine-models (2020). [Online].Available : 

https://en.wind-turbine-models.com/turbines/504-

carter-cwt-300 . (Accessed: Apr. 13, 2021). 

[22]  M. shahid, and A. Praveen, “Modeling and Control 

Of Hybrid Wind-Solar Energy System,” International 

Journal of Latest Research in Engineering and Technology 

(IJLRET), vol. 02, pp.17-24, 2016. 

[23] T. Adefaratia, and R. Bansal, “Reliability, economic 

and environmental analysis of a microgrid system in the 

presence of renewable energy resources,” Appl. Energy, 

vol.236, pp.1089–1114, 2019, doi: 

10.1016/j.apenergy.2018.12.050. 

[24] K. Earfan, and K.Md., “A Short Term Day-Ahead 

Solar Radiation Prediction Using Machine Learning 

Techniques,” Journal of Climatology & Weather 

Forecasting, vol.6. ,2018, doi:10.4172/2332-

2594.1000238.  

[25] J. Álvarez-Alvarado, J. Ríos-Moreno, S. Obregón-

Biosca, G. Lomelí, J .Ramos, and M. Perea, “Hybrid 

Techniques to Predict Solar Radiation Using Support 

Vector Machine and Search Optimization Algorithms: A 

Review,” Appl. Sci, vol. 11, pp. 1044. ,2021, 

doi.org/10.3390/app11031044   

[26] M. Mostafa, K. Sam, T. Ehsan, K.Reza, and A. 

Nasrudin. “Economic dispatch in a microgrid through an 

iterated-based algorithm,” IEEE Conference on Clean 

Energy and Technology,2013, 

doi:10.1109/CEAT.2013.6775604. 

[27] L.daoliuhe(2016).[Online].Available: 

https://github.com/xcyi2017/BeagleBone/blob/master/dis

patch_mip.py. 

[28] Gurobi Optimization Solver (2020). [Online]. 

Availableh: https://www.gurobi.com/resource/mip-basics. 

[29] M. Sufyan, C. Tan, N. Rahim, S. Raihan, and M.  

Muhammad, “Dynamic Economic Dispatch of Isolated 

Microgrid with Energy Storage Using MIQP,” 

International Conference on Intelligent and Advanced 

System (ICIAS), 2018, pp. 1-6, doi: 

10.1109/ICIAS.2018.8540623. 

 

https://solcast.com/solar-data-api/api-toolkit/
https://en.wind-turbine-models.com/turbines/504-carter-cwt-300
https://en.wind-turbine-models.com/turbines/504-carter-cwt-300

