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Abstract- This paper introduces a novel fault location model based on Adaptive Neuro-Fuzzy Inference System (ANFIS). For 

the purpose of performance improvement, a meta-heuristic algorithm known as Non-Dominated Sorting Genetic Algorithm 

type 2 (NSGA-II), which has the ability of fast searching for the optimal point and escaping the local optimality trap, is used 

for ANFIS training. The fault current and voltage are usually the two parameters used as the inputs to the ANFIS, even though 

they cannot truly specify the fault characteristics on their own. Here, Discrete Wavelet transform (DWT) is used to extract the 

relevant features of the fault current. To demonstrate superiority of the proposed model, a comparative study is performed 

against the traditional Least-Squares and Back-Propagation (LS+BP) and Chaotic Dynamic Weight Particle Swarm 

Optimization (CDW-PSO) methods. The simulation results show that the proposed estimation model has a superior 

performance compared to the previous models in terms of both convergence speed and estimation error. 

Keywords Fault location estimation, VSC-HVDC system, Adaptive neuro-fuzzy inference system, Non-dominated sorting 

genetic algorithm II, Discrete wavelet transform 

 

 

1. Introduction 

The High Voltage Direct Current (HVDC) transmission 

system is an effective large scale power transmission method 

with minimum power loss, especially over long distances [1], 

which has progressed considerably with the progress of 

power electronics and usage of high power switches in DC-

AC and AC-DC converters [2]-[5].Application of VSC-

HVDC system brings many advantages, however the HVDC 

systems are subject to various faults that, if not detected in 

time, will impose heavy losses on network equipment [6]. 

Consequently, a good deal of studies have been carried out to 

estimate the locations of faults in these systems, e.g. 

differential protection techniques [7] which is costly method. 

Thus, numerous fault location models have been proposed in 

the papers to pave the way to overcome the problem ahead 

[8]. Two conventional methods for fault location in power 

systems are neural network [9] - [13], and Travelling-Wave 

(TW) [14] - [17]. These methods have a major drawback that 

is requirement of the reflected wave speed and arrival time of 

the wave-front for fault location estimation, which are 

difficult to measure. To cope this challenge, feature 

extraction methods have been introduced like Singular Value 

Decomposition (SVD) [18] - [19], Fast Fourier Transform 

(FFT) [20], Hilbert Huang Transform (HHT) [21] - [23] and 

Wavelet Transform (WT) [24] - [25].The extracted features 

obtained by these methods will then be applied to an 

estimator model. A number of estimation models have been 

proposed in the articles, for instant Support Vector Machine 

(SVM) [26] - [27],Extreme Learning Machine (ELM) [28], 

Random Forest (RF) [29] - [30], Gaussian Process 

Regression (GPR) [31], and Artificial Neural Network 

(ANN) [32],[33]. The majority of the estimation methods are 

based on machine learning techniques, wherein the SVM and 

ANN have the most applications [34]. Unlike ANN, SVM-

based techniques do not depend on the number of features. 

This characteristic is especially important in fault detection 

and localization since required features can be extracted 

https://en.wikipedia.org/wiki/Neuro-fuzzy
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directly from the original data without further need for pre-

processing [35]. The SVM is a computational learning 

technique that performs estimation based on the statistics 

received from feature extraction models [36]. It has more 

success in classification and regression analysis applications; 

however, due to its high computational cost and lack of 

probable estimations, it is not very accurate in applications 

which involves in estimating parameter with uncertainty 

[37]. In contrast, Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is a successful estimation technique being widely 

used in studies related to classification and fault location 

estimation within the different areas of the power system 

[38] - [41]. The classic structure of ANFIS has three 

fundamental limitations: (1) it depends on the type and 

number of membership functions, (2) the optimal location of 

the membership functions must be specified, and (3) 

limitations with respect to dimensions [42]. As a remedy to 

these problems, ANFIS has been used along with feature 

extraction techniques to alleviate the input dimensions, while 

intelligent algorithms are applied to optimize its parameters.  

One of the commonly used feature extraction schemes is 

discrete wavelet transform (DWT), where the output can be 

extracted as approximate and detailed coefficients [43]. In 

order to train ANFIS and calculate its optimal parameters, 

the traditional least squares and back-propagation (LS+BP) 

method is used; this has, however, poor performance in terms 

of convergence speed and estimation error [44]. To enhance 

the performance of the ANFIS, various optimization 

algorithms can be used to train this system. The main benefit 

of the optimal training of the ANFIS using meta-heuristic 

optimization algorithms is prediction or estimation error 

reduction and fast convergence, particularly in real-time 

estimation applications. Numerous novel optimization 

algorithms with fantastic features are proposed in the 

literature. In [45], a novel modified Whale optimization 

algorithm is utilized for congestion control in power systems. 

In this algorithm, the coordination between the exploration 

and exploitation processes is modified by introducing two 

correction factors that prevent the algorithm from premature 

convergence. Similar studies are presented in [46] and [47] 

using modified Grey Wolf and Moth Flame optimization 

algorithms, respectively. A congestion management scheme 

is proposed in [48]. The real power delivery of the generators 

is optimally rescheduled using the Elephant Herd 

optimization algorithm to minimize the congestion cost. The 

congestion management (CM) problem in a deregulated 

power system environment in the presence of wind farms is 

solved in [49] by utilizing the Gravitational Search 

Algorithm (GSA). The most sensitive generators are sorted 

for participating in the CM problem according to the 

minimization of the active power yield of each generator. 

Inspired by the biological models of living organisms, 

the Non-dominated Sorting Genetic Algorithm type 2 

(NSGA-II) is a novel meta-heuristic algorithm with 

significant characteristics. In this algorithm, the reproduction 

characteristics of organisms are modeled as an objective 

function; over time, by applying the mutation and crossover 

operators on the previous generation, the next generation is 

formed, which is better than the previous generation in terms 

of reproduction characteristics [50]. High-speed convergence 

and escaping from the local optimal traps are the unique 

features of this algorithm [51] - [52]. 

In this paper, the Daubechies-2 (db-2) mother wavelet 

has been used and 6 levels (1 approximate and 5 detailed 

levels) are formed for each fault signal. Finally, the set of the 

extracted features is applied to ANFIS for training and 

testing purposes. In order to improve performance of ANFIS, 

the NSGA-II algorithm is utilized; then, performance of the 

estimation model is compared with the default ANFIS-LS + 

BP model in terms of convergence speed and estimation 

error. In the previous study, the Chaotic Dynamic Weight 

Particle Swarm Optimization (CDWPSO) algorithm was 

used to optimize the ANFIS parameters [53]. To compare the 

performance of the proposed ANFIS-NSGA-II + DWT 

estimation model, in this study, CDWPSO, PSO and GA 

algorithms will also be considered for ANFIS training  and 

the results will subsequently be compared with the proposed 

estimation model. 

The performance of the NSGA-II optimization algorithm 

is already confirmed in [54] for multi-objective flexible 

workshop scheduling. The main advantage of this algorithm 

is its capability to handle multi-objective problems. 

However, the selection operation factor of the NSGA-II 

differs from the traditional GA. In this phase of optimization, 

the fitness function is calculated according to the domination 

of the initial population, so the distribution characteristics of 

the Pareto optimal solution set could be ensured. In addition, 

the population diversity is guaranteed by extending the 

individuals in the quasi-Pareto domain to the whole Pareto 

domain with uniform distribution. This will improve the 

convergence speed and stability of the optimization 

algorithm. 

The novelty of the paper can be summarized as follows: 

• Using the discrete wavelet transform scheme with 9 

features extracted from the fault current signal, which 

have been explained in [55] - [56].It is confirmed that 

there are various features that can be extracted from 

the fault signal according to the DWT scheme; 

however, to the best knowledge of the authors, these 9 

statistical features have never been used in the 

literature related to the power system applications. 

• In order to evaluate the performance of the training 

algorithm, i.e. NSGA-II, a comparative study using 

some conventional optimization methods including LS 

+ BP, PSO, GA and CDWPSO are performed in terms 

of their convergence speed and estimation error 

• The DWT-based feature extraction methods typically 

apply a vector of extracted features to machine 

learning algorithms [43]. In this paper, 6 levels 

consisted of approximate and detailed coefficients are 

extracted, where each level is comprised of 9 extracted 

features for 24 different fault intervals. Therefore, for 

each level, a feature matrix will be obtained that 

improves the estimation accuracy. 
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The article proceeds as follows. In section two, the 

proposed estimation model consisting of the Adaptive 

Neuro-Fuzzy Inference System, the DWT based feature 

extraction model, and the NSGA-II optimization algorithms 

explained. In section three, the VSC-HVDC system under 

study is presented and various faults are simulated to 

generate the initial inputs. Next, the features, supposedly 

being the inputs to ANFIS, will be extracted by DWT 

method. The performance results of the proposed ANFIS-

NSGA-II + DWT estimation model are presented and 

furthermore compared with other estimation models at the 

end of this section. Finally, section four will summarize and 

conclude the paper. 

2.  Proposed Estimation Model 

The structure of the proposed ANFIS-based fault 

location estimation model is shown in Fig. 1.  From this 

figure, the estimation model is consisted of three main 

blocks: the first block illustrates the VSC-HVDC system 

under study; the second block shows the feature extraction 

technique, wherein the effective features are extracted from 

the fault current signal and subsequently fed into the 

estimator; and the third block is an ANFIS-based estimator 

that pinpoints the fault location in the HVDC system based 

upon the features provided by the second block. For the 

purpose of training the ANFIS, in this paper, the Non-

dominant Sorting Genetic Algorithm Type 2 has been 

adopted. To extract the effective features of the fault current 

signal, the discrete wavelet transform has been utilized. In 

order to conduct performance comparison for the proposed 

model, fault current will be applied directly to the estimator 

block where only the information on the fault current signal 

with a sampling rate of 10-3 seconds will be fed as input into 

the ANFIS. Also, the traditional LS + BP method will be 

implemented separately for the ANFIS training and the 

results will be compared with those of the NSGA-II 

algorithm in terms of estimation error and convergence 

speed. To demonstrate the superior performance of the 

proposed estimation model, a similar scenario will also be 

run with the classic CDWPSO, PSO and GA as the training 

algorithms of ANFIS and the result will be compared against 

those of the proposed model.  

In the VSC-HVDC system under study, based on the 

location of fault, two types of faults are defined: internal and 

external. In Fig. 2, different fault zones are illustrated for the 

VSC-HVDC system. It should be noted that since the fault 

measurement is conducted on the M side, when a fault occurs 

in section hj it would be considered as an external fault, 

while an occurrence of fault in section jk will be identified as 

internal. To discern the internal and external faults, the 

Variance Contribution Rate (VCR) criterion has been 

adopted [57]. This criterion reflects the effects of amplitude 

and frequency fluctuations on the characteristics of the main 

signal at different scales. By definition, VCRk for the kth 

distance would be:  
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in which, L is number of divisions on the transmission 

line, cik(t), the approximate coefficient for the kth division 

and rik(t), the final remainder of the difference between the 

original signal and the corresponding approximate version 

derived by DWT technique for  each distance k: 

)()()( tptxtr iii −=                                                   (2) 

here, xi(t) is the original fault current signal and pi(t), the 

approximate version derived by DWT. 

 

Fig. 1. The schematic structure of the proposed fault 

location estimator 

 

Fig. 2. Fault zones in the two-terminal VSC-HVDC 

system 

2.1 Adaptive Neuro-Fuzzy Inference System(ANFIS): 

Fig. 3 illustrates the structure of a two-input ANFIS [52]. 

The traditional LS+BP algorithm has been used for training 

and parameter adjustment. In ANFIS, there are two 

parameters known as Antecedent and Conclusion. The 

logical dependency between the inputs and output will be 

formed by adjusting these parameters [58].  
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Fig. 3. ANFIS configuration 

 

2.2 Non-dominant Sorting Genetic Algorithm Type 2 (NSGA-

II): 

The NSGA-II algorithm is a form of multi-objective GA 

algorithms with unique properties with respect to 

convergence and optimization response. The steps of this 

algorithm can be summarized as Algorithm 1 [59]: 

Algorithm 1: Pseudo code of NSGA-II 

1- Initialize population 

2- Evaluate objective or fitness function 

3- Assign rank to each individual based on Pareto Dominance 

4- Calculate the Crowding Distance (CD) 

5- Combine the initial population with the new individuals (new 

individuals or offspring which are produced by mutation 

and crossover processes)   

6- Replace parents with the best individuals from the combined 

new population. To this end, in the first stage, those 

individuals whose fitness functions are found to be lower, 

through ranking, will be replaced by the previous parents 

and the new population will be sorted based on their 

crowding distance (CD). The initial population and the 

population resulted from the application of the mutation 

and crossover operators would be sorted during this stage, 

and those with lower fitness functions would be eliminated 

afterwards. In the next stage, the remaining population will 

be sorted again according to their crowding distance.  

7- Repeat this process until stopping condition of the algorithm 

is met. The stopping condition is determined either by the 

limitation on the number of iterations of the algorithm or by 

the fitness function quality condition. 

8- It must be noted that the crowding distance factor is a 

parameter used to select the solutions from the front of the 

possible solutions. The following assumptions are made on 

the CD: 

• The crowding distance between the first and last 

points of the front of possible solutions is infinite.  

• For any given point from the front of possible 

solutions, the crowding distance is calculated 

according to:
minmax
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• where, CD[i] is the crowding distance of the ith 

individual over the front of possible solutions, i.e., 

F;   
i

mf  is the mth fitness function for the ith 

individual over the front F; and 
min

mf and
max

mf  are, 

respectively, the minimum and maximum values of 

the mth fitness function over the front F. Among the 

possible solutions of the front, the one with the 

highest CD will be chosen as the optimal solution 

 

2.3 Discrete Wavelet Transform 

The discrete wavelet transform has been used in this 

study to extract the useful features by applying in the fault 

signal. Feature extraction is a method of data pre-processing 

which takes a pattern of data and extracts a series of useful 

features from it. High accuracy and low computational time 

are the main characteristics of this method [60]. In this 

method, the main signal xi(t) is decomposed into a series of 

detailed and approximate components, i.e. wavelet 

coefficients that are indicated by ci. In order to apply DWT, 

the db-2 parent wavelet will be used throughout the paper 

[61]. Since, here, signal variations and sampling rate of the 

fault current signal are supposedly high, the db-2 parent 

wavelet will be used [62]. By defining 6 levels of resolution 

in DWT, 1 approximate level and 5 detailed levels will be 

obtained. In this paper, the fault current signal is considered 

as the main signal and measured on the M side; for each 

level, 9 DWT features are extracted [56], [60]. These features 

are Energy (Ei), Shannon Entropy (SEi), Log Energy 

Entropy (LOEi), Norm Entropy (NEi), Root Mean Square 

(rmsi), Mean Value (μi), Standard Deviation (σi), Skewness 

(SKi), and Kurtosis (KRTi) which are calculated according 

to the eqs. (4) – (12), respectively. A simple structure of the 

feature extraction scheme based on DWT is depicted in Fig. 

4. 
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In eqs. (4) - (12), cij is the combination of the detailed 

and approximate coefficients corresponding to the ith level . 

 

 

Fig. 4. Simple structure of the DWT-based feature extraction scheme 

Measurement of the fault current signal for the internal 

Pole-To-Ground (PTG) fault has been carried out at distance 

intervals of 10 km [10 km - 240 km]; for each signal, 9 DWT 

features are calculated. To compare and display the extracted 

features better, all values are normalized according to eq.(13) 

for displaying in the range of [0 1] [53].  
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After extracting the effective features and applying them 

to ANFIS, out of the total 1296 extracted features, 500 will 

be used for ANFIS training and the rest for its testing. In 

order to train ANFIS and determine the antecedent and 

conclusion parameters, the traditional LS + BP method and 

the proposed NSGA-II algorithm will be used. In this paper, 

the Mean Squared Error (MSE) is assumed as the objective 

function according to eq. (14) [53]: 
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in which, Aj is the actual output value of the jth training 

sample and Ej, the estimated value provided ANFIS for the 

jth training sample. Also, N denotes the size of training 

samples. Finally, the flowchart of the proposed fault location 

estimator can be illustrated as Fig.5. Also, Figs. 6-11 show 

the extracted features versus the fault distance for the 6 

resolution levels. 
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Fig. 5. Flowchart of the proposed fault location estimator 

 

 
Fig.6. The DWT-based extracted features - level 1 

 
 

Fig.7. The DWT-based extracted features - level 2 

 

Fig.8. The DWT-based extracted features - level 3 

 

 
Fig. 9. The DWT-based extracted features - level 4 
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Fig.10. The DWT-based extracted features - level 5 

 

 

 
Fig. 11.The DWT-based extracted features - level 6 

 

3. Simulation Results 

In this paper, a 250 km two-terminal VSC-HVDC system 

with a nominal transmission voltage of 230 kV and an 

apparent power of 2000 MVA has been implemented in 

MATLAB/Simulink software environment, and PTG faults 

are simulated at 10 km distance intervals with a fault 

resistance of 100 Ω, as can be seen in Fig. 12. Since the 

simulation has been performed for a duration of 1.5 seconds 

while the sampling rate is 10-3 seconds, 1500 samples will 

be obtained for the fault current signal of each case. The PTG 

fault current signal at [0.75 s 1.5 s] and 10 km from the point 

M, is plotted in Fig.13. Also, the approximate and detailed 

coefficients related to the 6 resolution levels, resulted from 

applying DWT, can be seen in Fig.14. In this method, for 

each fault current signal, 1 approximate version and 5 

detailed versions have been derived. From the difference 

between the approximate version and the original signal, the 

remainder ri will be obtained using eq.(2). According to (1), 

for each fault signal at the kth distance, a VCR value can be 

obtained. Fig.15 shows variations of VCR criterion versus 

fault distance. To distinguish between the external and 

internal faults, a threshold value is defined for VCR, herein, 

VCRcritical = 1% has been chosen [57]. According to the 

flowchart of Fig.5, to determine if the fault is external or 

internal, the VCR value will be compared to the threshold 

value. For external faults occurring within the hj zone in Fig. 

2, a VCR value less than 1% is obtained, while the VCR 

values for internal faults within the jk zone would be large. 

 

 

Fig. 12. The faulty two-terminal VSC-HVDC system under 

study 

 
Fig.13. Pole-To-Ground fault, at 10km distance from point 

M, in the VDC-HVDC system under study 

 

Fig.14.Wavelet coefficients of the pole-to-ground fault 

current, at 10km distance from point M, in the VSC-HVDC 

system under study 
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Fig.15. Values of VCR for a pole-to-ground internal fault 

versus fault distance 

4. The Proposed Estimation Model's Performance 

To evaluate performance of the proposed estimation 

model, 24 internal plus 2 external faults are simulated at 

random distances in MATLAB environment on the VSC-

HVDC system. According to Fig.5, upon identification of 

faults as internal, their effective features will be extracted 

using DWT technique and then applied as training data to the 

NSGA-II-based optimized ANFIS. To model the ANFIS’s 

inputs, Gaussian membership functions are assumed. Here, 

each input feature is described by two parameters, center and 

width, for all three membership functions. Next, the 

traditional LS + BP method and the NSGA-II algorithm is 

applied to determine the optimal values of these parameters. 

For example, the optimal membership functions using 

LS+BP and NSGA-II algorithms for one of the ANFIS inputs 

are plotted in Fig.16. Since there are 9 features for any of the 

6 levels, each feature is modeled with 3 membership 

functions, and each membership function has two 

parameters, center and width, therefore, there will be a total 

of 324 parameters to be optimized for ANFIS configuration. 

The optimal values of center and width parameters for the 

second feature (standard deviation), for a given PTG fault at 

a distance of 10 km, are presented in Table (1). 

 

Table (1). Optimal center and width values of three MFs 

corresponding to the second feature, using different 

optimization algorithms 

LS+BP NSGA-II Method 

[0.0790    0.2062] [0.0839    0.2392] MF 1 

[0.0886    0.4521] [0.0954    0.4750] MF 2 

[0.1011    0.7070] [0.0995    0.6950] MF 3 

 

For performance evaluation of the proposed estimation 

model, 24 internal faults at random distances and 2 external 

faults are simulated within the system under study and the 

locations of faults are estimated using the proposed model. 

The estimation results can be seen in Table (2). To assess the 

effect of using the extracted features as inputs to ANFIS, two 

cases are compared against each other. In the first case, 

samples of the fault current signal are applied to the ANFIS 

whereas in the second case, signal of the DWT extracted 

features is used as the ANFIS’s input. Also, for each case, 

the default LS + BP method and NSGA-II algorithm have 

been used to train the ANFIS. Table (2) demonstrates that by 

choosing the DWT extracted features as input to the ANFIS, 

the error is reduced considerably. Using the NSGA-II 

algorithm for both parameter optimization and ANFIS 

training also decreases the estimation error. The MSE values 

for the 4 scenarios under consideration are plotted in Fig.17. 

For better comparison, in Fig.18, the estimation error is 

plotted against the fault distance for the four given scenarios. 

Evidently, the error in the scenario where DWT features are 

used as the ANFIS’s inputs when ANFIS is trained by 

NSGA-II, is very small. The convergence speed and the final 

value of the MSE are demonstrated in Figs. 19-21 for 5 

repetition of the optimization algorithm. 

 

Fig.16. Membership functions of the second feature after 

optimization by LS+BP method and NSGA-II algorithm 

For better comparison, the CDWPSO algorithm used in 

the previous study [53], is also implemented in this paper for 

ANFIS training. Comparing the results, it is clear that the 

NSGA-II optimization algorithm has outstanding 

performance in terms of convergence speed and final MSE 

value. This feature is due to the ability of NSGA-II to 

examine the solutions front simultaneously and escape the 

local optimality traps. The best numerical value of MSE out 

of 5 different repetitions for each algorithm is indicated over 

their corresponding bars (see Fig.17). 
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Table (2). Performance comparison of the ANFIS-based estimation model for different scenarios 

VCR (%) ANFIS-LS+BP ANFIS-NSGA-II Actual Fault 

Distance (km) Current 

signal 

Features DWT Current 

signal 

Features DWT 

71.67 26.5625 25.6882 25.6127 25.6413    25.6080 

89.37 55.0125 54.7702 54.7034 54.7999    54.6720 

87.71 78.6984 78.0417 78.8203 78.1795    78.1440 

97.53 92.9413 91.4292 93.0761 92.2849    92.0400 

85.91 113.6263 114.6783 116.1615 115.0256   115.0800 

88.09 115.2614 115.1275 114.9010 115.6430   115.8720 

93.87 118.0036 120.4396 120.2111 119.7463   119.5440 

73.54 126.8548 127.2086 125.7440 126.8802   126.6480 

73.68 133.0762 134.6247 134.0147 134.3509   134.5440 

84.44 139.5752 137.0109 136.9960 138.0545   137.9280 

89.20 140.2723 140.0599 139.5450 140.8855   140.6400 

80.92 146.0204 147.1203 147.9248 146.8665   147.0240 

78.99 160.8261 160.2691 160.2012 160.1158   159.9360 

77.51 165.7664 168.0898 166.0066 167.0181   167.2080 

81.92 176.3865 176.7822 176.9020 177.4663   177.2640 

69.04 191.2238 192.2984 191.3210 192.3857   192.3120 

75.30 195.4511 196.2961 195.7404 195.6493   195.6960 

82.94 201.8727 202.9936 204.0628 202.8054   202.8480 

76.50 208.2659 208.3586 207.3888 207.6122   207.6960 

70.72 211.8818 210.4566 211.6323 210.8860   210.9600 

62.24 216.8414 216.4793 216.1474 216.2493   216.2160 

48.54 222.8223 222.2204 222.5415 223.2841   223.1040 

25.42 231.4363 233.5017 232.2675 232.4100   232.5360 

15.64 238.2985 236.9419 237.3791 237.7291   237.6000 

0.9163 - - - - External fault 

0.8827 - - - - Internal fault 

 
0.8532 0.2445 0.4269 0.0197 MSE 

 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
R. Rohani et al., Vol.12, No3, September 2022 

 

1356 
 

 
Fig.17. The calculated MSE values for different simulated 

scenarios 

 
Fig.18. Comparing the estimation errors obtained in different 

simulated scenarios 

 
Fig.19. Convergence curve of the LS+BP algorithm for 5 

repetitions 

 
Fig.20. Convergence curve of the CDWPSO algorithm for 5 

repetitions 

 
Fig.21. Convergence curve of the NSGA-II algorithm for 5 

repetitions 

To confirm the performance of NSGA-II algorithm, in 

addition to the CDWPSO algorithm, the classic PSO and GA 

algorithms are also simulated the best result during 5 

repetitions for each algorithm is shown in Fig.22. From this 

figure, comparison of results approves the superior 

performance of the NSGA-II algorithm in terms of 

convergence speed and estimation accuracy. The parameter 

of the optimization algorithms are presented in Tables (3)-

(6).The statistical results related to the implementation of 

different optimization algorithms can be seen in Table (7). 

From this table, it is clear that the proposed NSGA-II 

algorithm has superior performance compared to other 

algorithms regarding estimation accuracy and the final value 

of MSE is also less scattered. 

4.1Comparison with Other Studies 

In this section, comparison with other studies in the field 

has been performed. In [63] and [64], 250 km VSC-HVDC 

systems has been studied where in both of them, fault 

location estimation models are proposed. In [63], based on 

the concept of travelling wave, the natural frequency of the 

DC line is evaluated. It is found that the natural frequency of 

the DC line can be influenced by the fault distance and the 

travelling wave’s speed. Furthermore, an integrated method 

by combining the Fast Fourier Transform (FFT) and PRONY 

algorithm is proposed in [63] to estimate the dominant 

natural frequency. The fault current signal is considered as 

the input; hence, it does not provide the estimation model 

with effective features, thus, the error percentage is higher. 

The gap-based method called gap frequency spectrum 

analysis is proposed in [64]. As in [63], in this method, too, 

the fault current is used as the input. In order to compare the 

estimation errors from [63] and [64] with those of this paper, 

the estimation errors are plotted in Fig.23. In this figure, only 

five fault distances is considered duo to limitation of the 

studies performed in [63] and [64]. Also, to carry out a more 

complete comparison, the estimation error in the previous 

study [53] was recalculated for the 5 given distances. As can 

be seen in Fig. 23,the estimation error is much lower using 
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the proposed ANFIS-NSGA-II + DWT estimation model 

compared to those of the other methods, especially for more 

distant faults. The main reason of this characteristic is that 

the NSGA-II algorithm can effectively escape the local 

optimality. 

Table (3). Parameters of the GA optimization algorithm 

Mutation 

Probability 

Crossover 

Probability 

Crossover 

Method 

Maximum 

Iteration 

Initial 

Population 

Algorithm 

0.1 0.8 Two-point 

method 

450 100 Genetic 

Algorithm 

Table (4). Parameters of the PSO optimization algorithm 

Social 

Component (c2) 

Cognitive 

Component (c1) 

Inertia Weight 

(w) 

Maximum 

Iteration 

Number of 

Particles 

Algorithm 

1.5 1.5 0.5 450 100 Particle Swarm 

Optimization 

Table (5). Parameters of the CDWPSO optimization algorithm 

Social 

Component 

(c2) 

Cognitive 

Component 

(c1) 

Velocity 

Limit (k) 

Inertia 

Weight 

(w) 

Maximum 

Iteration 

Initial 

Population 

Algorithm 

2.0 2.0 0.2 Sine map 450 100 Dynamic Weight 

Particle Swarm 

Optimization 

Table (6). Parameters of the NSGA-II optimization algorithm 

Distribution 

index 

(Mutation)) 

Distribution 

index 

(Crossover) 

Mutation 

Probability 

Crossover 

Probability 

Maximum 

Iteration 

Initial 

Population 

Algorithm 

20 20 0.1 0.9 450 100 Non-dominated 

Sorting Genetic 

Algorithm II 

 

 
Fig.22. Performance comparison of different optimization 

algorithms 

 

Fig.23. Comparison of estimation error obtained in this work 

with the literature 
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Table (7). Performance comparison of different optimization 

algorithms 

MSE Standard 

Deviation 

Convergence 

)Iterations) 

Algorithm 

0.2445 0.5836 364 LS+BP 

0.0544 0.1525 285 PSO 

0.0378 0.1237 212 GA 

0.0255 0.1106 52 CDWPSO 

0.0197 0.0522 29 NSGA-II 

 

5. Conclusion 

A new fault location estimation method was proposed for 

a VSC-HVDC system based on ANFIS in this paper, in 

which the discrete wavelet transform (DWT) scheme has 

been used to extract effective features. To improve the 

performance of the ANFIS, the non-dominant sorting genetic 

algorithm type 2 (NSGA-II) was used for ANFIS training. 

Using this method, a matrix of useful features was obtained 

which subsequently was applied as input to ANFIS. The 

simulation results demonstrate the superiority of the 

proposed estimation model compared to others in previous 

studies. The mean square error (MSE) is determined as the 

objective function which is minimized by optimal training of 

ANFIS. The ultimate values of MSE by applying different 

training algorithms, i.e. LS+BP, PSO, GA, CDWPSO, and 

NSGA-II are compared and the results verify the 

performance of the proposed model based on the NSGA-II 

training algorithm. The MSE indicates the estimation error, 

so the lower this index, the more accurate the estimation 

model is. In addition, the fast convergence of the proposed 

NSGA-II helps the system operator to locate the fault source 

accurately and fast, and isolate the healthy part of the system 

before severe damage. The accuracy of the proposed model 

in estimating the fault location is confirmed by comparing 

the estimation error in the form of a comparative study. The 

future scope is focused on efforts to evaluate the 

performance of the proposed model in multi-terminal HVDC 

system applications and modular multilevel converter 

(MMC) based HVDC configurations. Since the larger 

number of signals in these structures, the dimension 

reduction techniques like principal component analysis 

(PCA) can be used as integrated feature extraction and 

selection schemes along with DWT. 
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