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Abstract- Power system oscillation is a significant threat among interconnected power systems that may lead to instability. The 

success of oscillation damping is primarily responsible for a modern power system's safe operation. However, the development 

of damping controllers is a multimodal optimization problem with constraints which challenges the traditional optimization 

algorithms. This paper critically examines damping schemes and controller stability analyses to find solutions to these issues and 

improve the performance of a Multi-Machine Power System (MMPS). This paper reveals the technique of improving power 

system stability by employing the Skill Optimization Algorithm (SOA) to optimize the gains of the conventional Sower System 

Stabilizer (PSS) and the Neuro-Fuzzy inputs-output scaling parameters. This study aims to propose a Multi-Level Neuro-Fuzzy 

Power System Stabilizers (MLNFPSS) to reduce the instability of a Multi-Machine Two-Area Power System (MMTAPS) under 

fault conditions. The simulations were run on a MMTAPS considering a transmission line fault in the middle. The analysis leads 

to the deduction that the proposed MLNFPSS response is more efficient than conventional PSS under symmetrical three-phase 

faults. The terminal voltage of the SOA based MLFPSS has undershoot, overshoot and settling time of 0.986s, 1.182s, 3.5s 

compared to the CPSS which had undershoot, overshoot and settling time of 0.8998s, 1.253s, 11.5s . Thus, the SOA based 

MLNFPSS was settled 69.56% taking only 3.5seconds faster than CPSS taking 11.5 seconds. All control strategies have been 

executed, and the simulation results have been assessed using MATLAB 2016b/Simulink. 

Keywords Multi-machine, stability, multi-level Neuro-Fuzzy controller, PSS, SOA. 

 

1. Introduction 

Power system stability is defined as the speed with which 

an electric power system returns to normal functioning after a 

physical disruption. The structure of electric power systems 

are rapidly expanding and include numerous components, 

including transformers, loads, transmission lines, generators, 

and controllers. These devices' interference with one another 

complicates the system's design and makes it susceptible to 

instability issues. The three stability issues are rotor angle 

stability, voltage stability, and frequency stability.   The 

interconnected synchronous generators' ability to run 

synchronized under normal operating conditions, after a large 

and a small disturbance depends on rotor angle stability [1]. 

To adequately serve the loads, the system must adapt to 

changing conditions in response to minor disturbances such as 

a change in load. The failure of large generators, transmission 

lines, or short circuits causes significant disturbances. The 

system will revert to a new equilibrium operating point if it 

remains stable. On the other hand, if a generator loses 

synchronization, the system becomes unstable. Blackouts and 

minor outages may thus result from instability in one area [1, 

2]. Small signal rotor angle stability is divided into four 

modes: local, inter-area, control, and torsional. Inter-area 
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modes are defined in the system by swinging arranged 

machines in one region against another. When two or more 

groups of a faithfully attached generator are interconnected by 

a long weak transmission line waving against each other, an 

inter-area oscillation is produced [3]. 

The first developed PSS were static phase lead 

compensators installed before the regulator exciter to provide 

additional stabilizing signals to compensate for the excitation 

system's significant phase lag [1-4]. However, a more 

intelligent and reliable strategy is needed for loading 

conditions that change quickly. Fuzzy systems, artificial 

neural networks, SOA, and other algorithms based on so-

called "intelligent control" have advanced their 

implementations in power systems control due to 

technological and theoretical advances in these 

methodologies. Kothari et al. [4] have looked at how to design 

a sliding mode stabiliser for a power system with a changeable 

structure that achieves the needed Eigen values amid a flurry 

of literatures that followed new trends in PSS. Hariri and 

Malik [5] have investigated the neural network's learning 

capacity to develop a PSS that could trap the equilibrium state 

in local minima. However, neural networks can only be used 

if training data is available; this means that the learning 

process may take a while. Thus, using neural networks and 

fuzzy logic controllers can be combined to extend PSS studies. 

Hoang and Tomosovic [6] have developed the seven 

membership functions, 7*7=49 fuzzy rules-based power 

system stabilizer. As a result, the authors modified the eleven 

membership function, resulting in 11*11=121 Rules that can 

resist the complex dynamic framework. An evolutionary 

programming algorithm was used by Abido and Abdel-Magid 

[7] to determine the optimum values for a conventional lead-

lag Power system stabilizer. In order to fine-tune the strength 

of the discontinuous component of the control signal used by 

the sliding mode controller, Saleem et al. [8] show how linear 

state feedback may be applied to a sliding surface with an 

integral term. Douidi et al. [9] suggested fuzzy logic and direct 

adaptive power system stabilization techniques. An adaptive 

indirect fuzzy was created by Ibrahim et al. [10]. The 

stabilization of MMPS was added to the adaptive fuzzy 

approach by Sharma et al. [11]. 

The performance of devices is directly dependent on their 

parameters, and the values of these parameters influence the 

device's dynamic response. They are challenging to solve 

because they are driven by dynamic and nonlinear equations 

of state, and establishing their precise answer is difficult and, 

in certain cases, even impossible using conventional 

mathematical techniques. In these instances, meta-heuristic 

methods are utilised to identify the optimal parameter or one 

that is very close to optimal. The genetic algorithm, the Firefly 

Optimization Technique (FFO), the Grey Wolf Optimization 

technique (GWO), the Particle Swarm Optimization (PSO), 

the Bacteria Foraging Algorithm (BFO), the Flower 

Pollination Algorithm (FPA), and the Whale Optimization 

Algorithm (WOA) are some of the computational algorithms 

used for tuning controller gains [5–11]. Furthermore, The 

SOA, a recently created computational algorithm, has been 

applied to other field of study. However, the MLNFPSS based 

on SOA that would enhance the gains of a traditional 

Proportional Derivative with Filter (PDF) and the input-output 

scaling factors of Neuro-Fuzzy controllers is not explored in 

literature. The following are the contribution of the proposed 

paper:  

i. Development of novel MLNFPSS for applying the 

dynamic power system stability  

ii. Application of SOA to optimize the PDF and Neuro-

Fuzzy controller parameters. 

iii. Comparison of the suggested optimum Multi-Level 

Neuro-Fuzzy (MLNF) controller's dynamic performance with 

the traditional PSS controllers when a symmetrical three-

phase fault in the centre of a transmission line is considered. 

iv. Implementation of the controller design in MATLAB 

/Simulink and evaluate the performance of the controllers in 

an interconnected power system. 

2. Literature Review 

PSS was a notion that was initially presented by De Mello 

and Concordia in 1969 [12]. The PSS is the principal 

dampening method for power system stability, and it is also 

the most cost-effective [13, 14]. The theory behind 

synchronous machines suggests that the excitation voltage 

may be adjusted in order to influence the amount of power that 

is generated by the machine. Installing the PSS will allow the 

provision of an additional input signal to the excitation system 

of the synchronous generator. This is the primary objective of 

the installation. PSS contributes an extra synchronising torque 

that is phase-locked with the speed deviation. As a direct 

consequence of this, the steadiness of the system is restricted, 

and the growing oscillations are dampened. Researchers from 

a variety of institutions provided an explanation for power 

system stability by installing and building PSS for Single-

Machine(SM) [15, 16] and MMPS [17, 18]. The PSS scheme's 

damping efficiency is contingent upon its having been 

designed correctly [17]. In most cases, if the PSS is designed 

correctly, it will be useful not only in damping local modes of 

oscillation but also in damping inter-area modes of oscillation 

[12, 17]. 

Ghandakly and Idowu [18] introduced a Decentralised 

Model Reference Adaptive Controller (DMRAC) for building 

PSS. This controller makes use of both exciter loops and 

governor loops in a coordinated way, which results in an 

improvement in the system's overall damping. The Lyapunov 

function of energy served as the foundation for the adaptive 

legislation [18]. For the design of the PSS, Chen and Malik 

[19] used the framework of, which included system 

perturbation for a wide variety of operations as well as 

parametric stability. Following a similar course of action led 

to the development of a number of other design concepts [20–

23], the majority of which were combinations of already 

established designs. 

It is possible to draw the conclusion that there has been a 

significant advancement in the notion of designing PSS.  This 

section demonstrates the design idea of a modern-day power 

supply system that is applied in contemporary power systems 

that make use of renewable energy sources. These systems are 

modern and sophisticated. In a nutshell, both PID-based and 

intelligent-based PSS are being utilised in this process. The 

given study demonstrated that there is potential for future 
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research in PSS to concentrate on the use of machine learning 

and artificial intelligence. The performance of devices is 

directly reliant upon their parameters, and the values of these 

parameters will impact the dynamic reaction of the device. 

They are difficult to solve because they are governed by 

dynamic and nonlinear equations of state, and determining 

their precise answer is difficult and, in certain instances, even 

impossible by employing traditional mathematical 

procedures. In these situations, meta-heuristic algorithms are 

being utilised in order to locate the ideal parameter, or one that 

is quite near to being optimal. They achieved success in one 

circumstance, but they were not successful in others. Due to 

the fact that they are able to adapt, variable structures with 

intelligent control offer simplified control in addition to a high 

level of assurance about their stability [24]. These 

characteristics are not accessible through the use of traditional 

methods for locating parameters. Optimizing the controller 

settings for damping schemes [25, 26] has been accomplished 

through the use of a wide variety of optimization strategies 

over the course of the past several decades. Some of the other 

algorithms explored in very recent years are Augmented Grey 

Wolf Optimization Algorithm(AGWO) [31], Barnacles 

Mating Optimizer Algorithm [32], Harris Hawk Optimisation 

Algorithm (HHO) [33], Sine Cosine Optimisation Algorithm 

(SCO) [35], Modified Whale Optimisation Algorithm 

(MWOA) [36], Levenberg Marquardt (LM) algorithm [37], 

Lightning Search (LS) Algorithm [38], Harmony Search 

Algorithm [42], Collective Decision Optimisation Algorithm 

(CSO) [44], Hankel Singular Value Approach [45], Artificial 

Bee Colony Optimisation Algorithm (ABC) [46], Tabu Search 

(TS) [50], Simulated Annealing [51],  Differential 

Evolutionary Algorithm (DEA) [52], Immune Algorithm (IA) 

[53]. Table 1 shows the findings from the most recent 

literature on optimization for Power system stabilizers for 

damping oscillators. 

Table 1. Recent literature on optimization for PSS for damping oscillations in MMPS 

SI. 

No. 

Author Reference Year Proposed 

method 

Findings Drawbacks 

1 Aliyo 

Sabo 

et al.  

[27] 2022  Interval 

Type-2 

Fuzzy 

Sliding 

surface 

Type real 

coded GA 

To improve damping control, the optimal 

tuning of sliding surface parameters has been 

viewed as an optimization problem involving 

the minimization of Integral Time Square 

Error using a Real Coded Genetic Algorithm. 

In a two-area, four-machine, 11-bus IEEE 

benchmark system, the proposed Fuzzy 

controller was evaluated. 

Though a novel 

controller was used, the 

optimization algorithm 

selected wasn’t ideal. 

There are many more 

efficient algorithm 

compared to real coded 

GA. 

2 B 

Salee

m et 

al. 

[28] 2022 Neuro 

fuzzy FFA 

The simulation result for eigenvalue analysis 

with NFC stabiliser produces stable 

eigenvalues that increased system damping 

by more than 0.1 with lower overshoots and 

time to rise via the suggested NFC process 

than with the traditional FFA-PSS. Similarly, 

the generator transient reaction's and 

depending on time to settle were enhanced by 

64.66 and 28.78% with the suggested NFC 

procedure than with FFA-PSS. The typical 

PSS was found to be complex in design, 

parameter optimization, and LFO control. 

Although a novel 

controller was 

employed, the chosen 

optimization algorithm 

was not optimal. There 

are numerous more 

efficient algorithms 

than actual coded GA. 

3 Aliyu 

Saho 

et al. 

[29] 2021

2 

back-

propagatio

n algorithm 

based 

Neuro 

Fuzzy 

Wavelwt 

controlller 

This research presents an ANRWC technique 

to improve power system stability. The 

suggested approach uses recurrent Gaussian 

for antecedent and wavelet for subsequent 

sections.  

Though a novel 

controller was used, the 

optimization algorithm 

selected wasn’t ideal. 

There are many more 

efficient algorithm 

compared to back 

propogated algorithm. 

4 KM 

Sridiv

ya et 

al. 

[30] 2021 FFA 

algorithm 

On WSCC multi-machine test systems, PSS's 

optimal design and auxiliary regulation of 

power fluctuations for IPFC were tested 

using a linear model. The IPFC model was 

compared to the FFA-PSSs controller using 

time-domain simulations and quantitative 

analysis.  

Though a novel 

controller was used, the 

optimization algorithm 

selected wasn’t ideal. 

There are many more 

efficient algorithm 

compared to FFA 

algorithm. 

5 Devar

apalli 

[31] 2021 AGWO 

Algorithm 

 

Static Synchronous Compensator 

(STATCOM), and PSS controllers which are 

designed in coordinations with the help of an 

the optimization 

algorithm selected 

wasn’t ideal. There are 
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R et 

al. 

unique hybrid augmented AGWO-PSO is 

presented here. A Multi-Objective 

Function(MOF) has been constructed. 

Eigenvalue analysis and the damping nature 

that are subject to perturbation have been 

presented under various loading conditions.  

many more efficient 

algorithm compared to 

AGWO-PSO. 

Furthermore, there is 

scope of using Neuro 

Fuzzy controller 

6 Devar

apalli 

R et 

al. 

[32] 2021 BMO 

algorithm 

In comparison to the conventional 

approaches, the newly developed algorithm 

successfully moved the system poles to the 

left side of the s-plane, which resulted in an 

improvement to the system's stability. 

A neuro-fuzzy 

controller hasn’t been 

explored. The 

optimization algorithm 

selected wasn’t ideal. 

There are many more 

efficient algorithm 

compared to BMO 

algorithm. 

7 Devar

apalli 

R et 

al. 

[33] 2021 HHO-PSO In this study, a proposal is made for the 

hybridization of a recently suggested HHO 

algorithm with the conventional PSO 

algorithm. The results of these investigations 

have recommended a particular method for 

the efficient damping of power network 

oscillations. 

The paper hasn’t 

utilised the most recent 

and most efficient SOA. 

Furthermore, a multi 

level Neuro Fuzzy PSS 

is not considered. 

8 Devar

apalli 

R et 

al. 

[34] 2020 GWO The suggested approach is validated and it is 

compared to other methods that are 

considered to be state-of-the-art. 23 

benchmark functions are used for the 

validation purpose. A mathematical model of 

a MMPS has been developed, and the 

dynamics of the power system components 

have been taken into consideration.  

No research has been 

done on a neural Fuzzy 

controller. 

Additionally, the most 

recent and effective 

SOA 

9 Devar

apalli 

R et 

al. 

[35] 2020 GWO-

SCO 

Algorithm 

The research of the system has been 

conducted under a fault situation that is 

capable of self-clearing, and the complete 

analysis has been given by doing an analysis 

of the eigenvalues. 

No analysis of a 

neurofuzzy controller 

has been done. 

Additionally, SOA, 

which is the most 

modern and effective, 

hasn't been used. 

10 Sahu 

PR et 

al. 

[36] 2019 MWOA The newly suggested MWOA strikes an 

appropriate balance between the WOA's 

exploration and exploitation stages. The 

controller is put through its paces with SM 

infinite bus system and a MMPS. 

No analysis of a 

neurofuzzy controller 

has been done. 

Additionally, SOA, 

which is the most 

modern and effective, 

hasn't been used. 

11 Dasu 

B et 

al. 

[37] 2019 WOA The proposed method is put to the test on two 

benchmark MM test systems, namely a three- 

generator nine- bus system and a two- area 

four- generator inter connected system, both 

of which function under a variety of different 

operating conditions.  

A neuro Fuzzy 

controller hasn’t been 

analysed. Furthermore, 

the most recent and 

most efficient, SOA 

hasn’t been utilised. 

12 Rana 

MJ et 

a. 

[38] 2019 LM  In this study, they used a training algorithm 

based on the Levenberg—Marquardt (LM) 

method. Under different loading conditions, 

the eigenvalues of the systems generated by 

an ANN-tuned PSS coordinated with UPFC 

and a fixed-gain conventional PSS 

coordinated with UPFC are compared. 

This paper utilised th 

ANNA nnd Neuro 

Fuzzy based 

controllers. But the 

paper only presented a 

single level neuro fuzzy 

controller.  

13 Rajbo

ngshi 

[39] 2019 LS The investigation into the impact of the 

combined controlling action of Interline 

Power Flow Controller(IPFC) and PSS is 

The Neuro Fuzzy 

controller hasn’t been 

utilised in this paper. 
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R et 

al. 

performed. It leads to the revelation that the 

integration of the same improves the system 

dynamics effectively than the individual 

inclusion of IPFC and PSS.  

Furthermore, it doesn’t 

utilise the most efficient 

Optimisation algorithm. 

14 Devar

apalli 

R et 

al. 

[40] 2019 HHO The suggested method performs an analysis 

on the damping natured given to the system 

states when they are subjected to 

perturbations as well as the eigenvalues of the 

system. The system is studied under a variety 

of loading situations, and the suggested 

method is evaluated in comparison to other 

algorithms. 

Although HHO 

optimization is used in 

this study, as of 2019, 

the SOA has shown to 

be far superior to HHO 

optimization. 

Additionally, a Neuro-

Fuzzy controller may 

be added. 

15 Devar

apalli 

R et 

al. 

[41] 2019 HHO In order to remark on the performance of the 

system while using the suggested technique, 

an eigenvalue analysis as well as 

performance characteristics of system states 

during disturbances are described below. 

In this paper, HHO 

optimization is utilised 

but since 2019, the 

SOA clearly 

demonstrates it’s 

superiority over the 

Harris Hawk 

Optimisation.  

16 Bagh

eri et 

al. 

[42] 2018 HS Thyristor-Controlled Series Capacitor 

(TCSC) and the Static Variable Compensator 

(SVC) have been taken into consideration in 

this design. Within the context of this model, 

the harmony search method, also known as 

HSA, is utilised for the purpose of doing fine 

tuning on the fuzzy PI. 

In this paper, compared 

to previous papers, a 

fuzzy control is used for 

the first time for PSS. 

But, the paper didn’t 

consider a Mulit Level 

Neuro Fuzzy PSS. 

17 Thu 

WM 

et al. 

[43] 2018 PSO In order to evaluate the practicability and 

efficacy of the proposed MRAS-PSS under 

the influence of network uncertainties, a 

number of simulations in the nonlinear and 

time-domain domains are carried out. 

In this paper, only three 

different operating 

circumstances has been 

presented.Furthermore, 

it hasn’t utilised more 

efficient optimization 

techniques. 

18 Dey 

P. et 

al 

[44] 2018 CDO PSS parameters are optimised for the goal 

function, which include eigenvalues and 

damping ratios of the electromechanical 

modes that are gently damped throughout a 

wide range of operating circumstances. 

Additionally, the most advantageous spots 

for installing PSS have been identified. 

The paper hasn’t shown 

how the proposed 

algorithm is better than 

the ones in literature. 

Furthermore, it hasn’t 

utilised neuro fuzzy 

techniques. 

19 Herre

ra JD 

et al.. 

[45] 2017 HSV 

approach 

It is able to compute the parameters of both 

controllers thanks to the linearized system 

model and the parameter-constrained 

nonlinear optimization technique. In addition 

to this, the settings are tuned in such a way as 

to acquire the gains of both controllers 

concurrently. After that, the nonlinear 

simulation is carried out so that the temporal 

response of the controller may be observed. 

The paper hasn’t 

demonstrated how the 

proposed optimization 

is better than other 

optimisation in 

literature. Furthermore, 

it hasn’t utilised neuro 

fuzzy techniques. 

20 Santr

a S et 

al. 

[46] 2017 PSO The PSO-based norm minimization 

technique is utilised in this approach for the 

purpose of selecting the weighting function 

and controller parameters. The H/H 2 MOF 

has been proposed for use in the controller 

parameter selection process. 

The paper has used a 

traditional optimization 

technique. 

Furthermore, it hasn’t 

utilised the Neuro-

Fuzzy techniques which 

can increase the 

controller gain even 

more. 
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21 Khod

abakh

shian 

et al. 

[47] 2016 WCA The results of the simulations performed on 

the IEEE 39-bus power system validate the 

effectiveness of the approach that was 

presented and demonstrate its higher 

performance in comparison to other methods. 

Though the paper used 

a very suitable 

optimization algorithm, 

the paper hasn’t utilised 

Neuro fuzzy techniques 

and Artificial Neural 

Networks. 

22 Shah

golia

n et 

al. 

[48] 2016 ABC The optimization that was performed after a 

significant amount of turbulence 

demonstrates that there is significant 

improvement in the system's stability along 

with the instant damping of the system's 

fluctuations in comparison to the state in 

which optimization was not performed. 

The paper hasn’t 

explored the use of 

Neuro Fuzzy 

techniques. urthermore, 

algorithms superior 

than ABC exists which 

could be utilised. 

 

Various Algorithms were investigated in previous 

literature. The SOA is a novel algorithm that has arised and 

has many advantages over previous algorithms. The 

advantages and disadvantages of various algorithms are given 

in Table 2. 

Table 2. Advantages and disadvantages of different algorithms  

Algorıthm Major advantage  Major dısadvantage 

GA [49] 

 

• Simple to understand and put into practice 

• Does not require prior understanding of maths 

• There is no guarantee of a solution that is optimal 

• Unable to solve a wide variety of different kinds of 

complicated optimization issues. 

• The propensity to converge in the optimal solution for 

the immediate environment 

TS[50] • Escapes from local minima as well by using the 

"tabu list" 

• A sluggish pace of convergence 

• The ineffective approach to solving the high-

dimensional problem 

SA[51] • Can give a solution even in a huge search area. 

• Easy to understand and apply  

• Provides pretty excellent solutions for certain 

optimization issues 

• A sluggish pace of convergence a lack of capacity to 

find solutions to difficult multifaceted issues 

• Performance decline in big dimension issues 

DEA[52] • Possesses the ability to solve multidimensional, 

non-differential, and non-continuous problems;  

• Difficult to choose the appropriate control settings 

• There is no guarantee of the accuracy of the solution. 

PSO[53] • It Converges rapidly;  

• It is capable of resolving complicated optimization 

issues in a variety of application areas. 

• The unfavorable impact on the solutions brought 

about by the incorrect selection of control factors 

• The risk of becoming mired at a particular region's 

minimum point 

• Poor performance in high-dimensional as well as 

multimodal optimization 

IA[54] • It is adept at the search exploration process. • Poor utilization of the search 

SOA[55] • High Convergence rate 

• Can solve complex multidimensional problems  

• It is faster and requires less iterations 

• It is a little complex to understand 

 

Overall, the authors noticed that there is a need for 

algorithms with higher convergence speeds which needs less 

iteration to be used in the controllers for Power System 

Stabilizers. Earlier papers [43-48] utilised techniques with 

conventional methods and haven’t utilised Neuro Fuzzy 

techniques. They used optimization algorithms such as ABC 

[48], WCA [47], PSO [46], HSV [45], CDO [44], HS [43]. It 

was in [42] where a neuro-fuzzy controller was first explored. 

Despite the use of neuro-fuzzy controllers, we noticed that we 

could increase the overall power system stability by using a 

novel SOA which has a higher convergence rate than every 

other algorithm. Furthermore, A utilizing a MLNF cascaded 

controller would be extremely efficient. Thus, the maiden 

application of SOA for PSS would lead to high power system 

stability. Also, the authors noticed that there is a need to 

conduct research on MLNF cascaded controllers for PSS and 

providing a comparison of it with ordinary methods. The SOA 

algorithm based MLNF controllers can also be used to 

different applications like AGC, LFC for power system 

stability but in this article, we focused on its application for 

PSS. 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S0142061516305804#!
https://www.sciencedirect.com/science/article/abs/pii/S0142061516305804#!
https://www.sciencedirect.com/science/article/abs/pii/S0142061516305804#!
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3. Materials and Method 

3.1. Proposed Test Model 

The two fully symmetrical areas of the MMPS in Figure. 

1 are connected by two 230 kV lines, each 220 km long. Two 

identical 20kV/900MVA rotor synchronous machines acts as 

thermal plant generators are installed in each area, and each is 

connected to a transformer (T1, T2, T3, and T4). The 

parameters of the synchronous machines (M1, M2, M3, and 

M4) are the same in both areas. However, for all generators in 

Area 1 and Area 2, the inertia is H = 6.5s and H = 6.175s, 

respectively. All thermal generating plants have fast static 

exciters with a 200 gain and the same speed regulators. A 

generator's capacity is 700 MW for all generators; constant 

impedance loads are taken for granted for the loads. Areas 1 

and area 2 have loads of 967 MW (L1) and 1767 MW (L2), 

respectively. The 187 MVAR capacitors (C1 and C2) were 

installed in each area to optimize the load voltage profile and 

bring it closer to unity. Two tie-lines total 413 MW and one 

tie-line total 353 MW of transport power from Area 1 to Area 

2, respectively. 

 

Fig. 1. Four Multi-machine two-area test power systems 

3.2. Proposed Method 

3.2.1.  Fuzzy Logic Controller (FLC) 

The FLC theory, a theoretical concept that improves 

conventional control theories, was first proposed in 1965. FLC 

is a key tool for solving problems with the power system using 

mathematical techniques. A substantial body of research has 

been compiled on FLC applications in order to improve the 

dependability and resilience of power system control. FLC is 

a type of logic utilized in human reasoning. However, these 

systems must be created, modified, and used with adequate 

care. FLC includes Defuzzification and fuzzy inference 

systems built on fuzzification rules [12]. Several membership 

functions are used to convert binary values into fuzzy values. 

The entire control structure is made clear by the rule base, 

which is just an if-then rule. The membership functions and 

rules base need to be modified to build a fuzzy controller with 

a solid structure. Defuzzification converts fuzzy values into 

clear ones that plants can use. The fuzzy logic controller 

receives two scaling factors, Ke1 and Ke2, as inputs and 

produces Ku as an output. Input and output membership 

functions must be equally represented to ensure optimal 

computation performance and memory usage. From the 

literature review, the triangular membership function is the 

best among the others. It requires less memory, is simple to 

implement in real-world scenarios, and is easy to use with a 

fuzzy interfacing system [9-13]. 

A crisp quantity (set) becomes a fuzzy quantity by 

fuzzification (set). The absolute lack of determinism and 

uncertainty of the many well-known precise and deterministic 

quantities must be acknowledged. The ability of the variables 

to be represented by a membership function may have 

contributed to the development of this uncertainty owing to 

fuzziness and imprecision. The complete control architecture 

is explained by the rule base, which is effectively an if-then 

rule [56]. To design a Fuzzy controller with a clear 

organizational structure, the Membership functions and rule 

foundation must be modified. Using the fuzzy inference 

method is not practicable for these rules because they have 

been transformed into fuzzy forms. In order to boost the firing 

power of the rule base, Mamdani FIS was utilized in this work, 

which employed the well-known "center of gravity" 

Defuzzification technique [57]. In previous literature for fuzzy 

controller design, seven membership functions with 7*7=49 

criteria were also taken into account. To optimize the heavy-

loading power system, nonetheless, it falls short. The authors 

created 11*11=121 Rules by updating the eleven membership 

functions to fit the complex dynamic framework. 

Defuzzification is the process of transforming ambiguous 

data into clear ones that plants can use. Two scaling factors, 

Ki1 and Ki2, are used as inputs and outputs by the fuzzy logic 

controller. To ensure excellent computation speed and 

memory efficiency, input and output membership functions 

must be represented equally [58]. Triangular membership 

functions are favoured, according to the literature study, since 

they are easy to create for real-time applications, utilize less 

memory, and are straightforward to employ with fuzzy 

interfacing systems (FIS). Therefore, eleven MFs are taken 

into account for both inputs and outputs. All MFs range in 

value from -1 to 1, [59–62]. The fuzzy interface system creates 

logic. The output from each rule foundation is produced by the 

Mamdani Fuzzy interface system logic. The acronyms for the 

following terms are: PV (positive very high), PL (positive 

large), PB (positive big), PM (positive medium), PS (positive 

small), ZR (zero), NS (negative small), NM (negative 

medium), NB (negative big), NL (negative large), and NV 

(negative extremely high) (negative very high). The 

fundamental block diagram of a fuzzy logic controller is 

shown in Figure 2. Figure 3 shows the Inputs and output 

triangular membership function of fuzzy logic controller. The 

range of all membership functions should be between -1 and 

1 as shown in Figure 3 (a) – (c). 

Fuzzification 

interface

Interface 

Engine

Defuzzification 

interface

Knowledge 

Base

Controller 

inputs

Fuzzy 

inputs

Fuzzy 

outputs

Controller 

outputs

 
Fig. 2. The block diagram of Fuzzy Logic controller 
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Fig.3 (a). Error input signal (e) of Inputs and output 

triangular membership function of LFC 
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Fig.3 (b). Error derivative input signal (de) 
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Fig.3 (c). Output signal (u) 

3.2.2. Neuro-Fuzzy Controller (FLC) 

The benefits of neural networks and fuzzy systems are 

integrated in the Neuro-fuzzy approach. It develops a model 

that uses the learning capabilities of neural networks to 

optimize its parameters and fuzzy theory to express 

knowledge understandably. The structure of the Neuro-Fuzzy 

controller is shown in Figure 4. The most effective artificial 

intelligence technique combines fuzzy logic control and 

neural networks. The fuzzy logic interface system is 

represented by the systems model's input and output data pairs 

[5]. Neuro-fuzzy interface systems have applications in many 

control applications, signal processing, decision-making, and 

modelling [9]. 

 

Fig. 4. The structure of Neuro-Fuzzy controller  

3.2.3. PDF Controller  

Most linear plants use traditional PDF controllers because 

they are less expensive, more efficient, and have more 

superficial design structures. The PDF controller is ineffective 

for higher-order systems with variable parameters and a time 

delay because of its linear nature. A PDF is a PD controller 

that uses a low-pass filter on the derivative term to improve 

system dynamics response. The low-pass filter helps reduce 

the dynamic system response to high-frequency oscillations. 

Additionally, each generator comes with initial built-in 

traditional PDF controllers. The generator is represented by 

the transfer function 

     (1) 

Where Kp refers to the controllers proportional gain, KD 

refers to the controllers Derivative gains and N refers to the 

derivative filter coefficient. 

3.2.4.  The Proposed Cascade MLNF-PDF PSS 

The suggested cascaded Neuro-fuzzy controller employs 

Neuro-fuzzy logic control, with Proportional plus derivative 

(PD) control actions (Eq. 1). According to the equation, the 

values of e and de affect the Kp and Kd, which are the 

equivalent proportional and derivative gains of the 

conventional controller depending on the operating point. The 

nonlinear Neuro-fuzzy action has variables due to the inputs-

output scaling factors gained with the operating point, just like 

a PDF linear action. When the Neuro-Fuzzy PSS scaling 

factors (ke, kde, and Ku) are various, the linear proportional-

derivative gains (Kp, Kd, N) change dramatically. Figure 5 

shows the block diagram of the proposed cascaded MLNPSS. 
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Fig. 5. Block diagram of the proposed cascaded MLNF PSS  

3.3.  Skill Optimization Algorithm 

When the Neuro-Fuzzy PSS scaling factors (ke, kde, and 

Ku) are various, the linear proportional-derivative gains (Kp, 

Kd, N) change dramatically. The collaborative development 

of multi-machine PSSs is frequently presented as an 

optimization issue. Several optimization algorithms have been 

described in the literature to handle this kind of problem. A 

SOA is a novel metaheuristic optimization technique [63-64]. 

The real source of inspiration for SOA design is human efforts 

to acquire new skills and improve on those already possessed. 

A connection exists between the string structure and an SOA's 

parameters. On the other hand, the SOA skilfully takes 

advantage of a random search to produce the desired result. 

The SOA first creates a random population of various strings 

to select the best response. Each stage determines each agent's 

fitness value for the following generation of the current 

population. The Integral of Squared Error (ISE) must be 

optimized for the objective function. The procedure is 

repeated until the best and the most thorough response has 

been found. Figure 5 is shown the flow chart of SOA. In order 

to optimize the PDF gains and the NLNF controller inputs-

output scaling factors subject to minimizing J. It is thought 

that the number of search agents (n) = 20, population size 

(100), problem dimension (6), damping coefficient (0.7), and 

the maximum number of iterations (N) = 30 should be used. 

The Parameter limits expression for the objective function is 

illustrated in Eq. (2). 

 (2) 

Initialize SOA Parameters  

KP , KD, K1e, K2ed, K3u,  N 

Encode cost function

Function y = 

ise_cost(x)

Evaluate objective 

function for initial 

population

Evaluate objective 

function for each 

iteration

Iter=Iter+1 

Yes

No

Start

Get Optimal value  KP,  

KD, K1e, K2ed, K3u, N

Are the 

objective 

function 

satisfied? 

Compute the best, 

global best solution

Calculate the new 

fitness search agents

  end
 

Fig. 6. The flow chart of SOA 

The SOA is a population-based technique, and its 

participants are real people who are always working to 

advance their knowledge and capabilities. In point of fact, 

individuals of the SOA population are candidates for solving 

the optimization problem in question. The values of the 

problem decision variables may be determined based on the 

placements of these members in the search space. At the 

beginning of the algorithm, the placements of SOA members 

are first determined by a random process. According to the 

equation, a mathematical model of the SOA population may 

be constructed using a matrix (Eq. (3)). 

         (3) 

In this case, X is the population matrix for the SOA, Xi is 

the ith candidate solution, xi, d is the value of the dth variable 

that was suggested by the ith population member, N is the 

number of members of the SOA, and m is the number of 

variables. 

Each individual in the population has the potential to be a 

part of the solution to the issue. To put it another way, a value 
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for the goal function is calculated by inserting each member 

into the appropriate variable in the problem. 

F = 

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

  (4) 

As a result, the values that were acquired for the goal 

function are able to be characterised mathematically using a 

vector in accordance with Eq (4). In this case, F is a vector 

containing all of the values that were obtained for the objective 

function, and Fi is the value that was acquired for the objective 

function based on the ith candidate solution. When looking at 

the values that were assessed for the objective function, the 

value that is considered to be the best identifies the member 

that is considered to be the best, and the value that is 

considered to be the worst identifies the member that is 

considered to be the worst. Given that both the values of the 

objective function and the members of the population are 

updated during each iteration, the best and worst members of 

the population are also changed throughout each iteration of 

the process.  

Exploration and exploitation are the two stages that make 

up the process of updating the population members in SOA. 

During the exploration phase, you will simulate the process of 

acquiring a skill from an experienced professional. During the 

exploitation phase, you will be mimicking the growth of skills 

through the efforts and actions of individual users. The update 

process is carried out in the context of SOA design in two 

phases: the phase of exploration, which has the goal of doing 

a global search in the problem-solving space, and the phase of 

exploitation, which has the goal of conducting a local search. 

During the exploration phase, SOA was structured such that 

its members moved in the search space following the 

instruction of other SOA members rather than travelling 

simply in the direction of the person who was deemed to be 

the best. Because of this, the algorithm's exploration capacity 

is increased, allowing it to more correctly scan the search 

space and locate the area that was initially ideal. On the other 

hand, when it comes to the exploitation phase, the algorithm 

is able to converge to better probable solutions thanks to the 

local search that is conducted close to each individual member 

of the population. 

3.3.1. The First Phase: Learning from Experienced 

Individuals (Exploration) 

During the first phase, each member of the SOA works 

toward the acquisition of a skill under the direction of an 

expert member of the community. The value of the objective 

function attained by a member of the population is directly 

proportional to the quality of that individual's contribution to 

the population as a whole. An SOA member is said to have an 

expert member when that member's conditions are deemed to 

be superior to those of the other members based on the value 

of the objective function. If a member of the SOA has a higher 

objective function value than any other members of the SOA, 

then those members are included in the "experts set" for that 

member. One of these individuals from this group will serve 

as a mentor to the individual in question after being chosen at 

random to take on this role. As a result, the specialist who has 

been chosen to direct the SOA member might not always be 

the most suitable candidate option. In point of fact, the best 

possible candidate solution is a non-rotating member of the 

experts set, applicable to all SOA members. Learning the skill, 

which refers to the algorithm's capacity for both global search 

and exploration, leads the members of the population to be 

steered to different spots in the search space. The expert 

member is responsible for this. If the new position that is 

computed for each individual in the population results in an 

increase in the value of the objective function, then it may be 

considered acceptable. As a result, the first phase of the update 

may be described using Eqs. (5) and (6) in accordance with 

the notions that have been discussed. 

𝑋𝑖
𝑃1: 𝑋𝑖,𝑑

𝑃1 = 𝑥𝑖,𝑑 + 𝑟 × (𝐸𝑖,𝑑 − 𝐼 × 𝑥𝑖,𝑑
), 𝐸𝑖 = 𝑋𝑘, 

 (5)                                            

Where 𝐹𝑘 < 𝐹𝑖and k is randomly selected from {1,2,,N}, k≠
𝑖 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒
       (6) 

Here, XP1 is the newly calculated status of the ith candidate 

solution based on the first phase, xP1 is its I i,d dth dimension, 

FP1 is the value of its objective function, Ei is the expert who 

has been chosen to guide and train the ith member of the 

population, Ei,d denotes its dth dimension, r is a random 

number in the range [0 1], and I is a random number.  

3.3.2. The Second Phase Focuses on Improving 

One's Skills via Individual Effort and Practise 

(Exploitation) 

During the second phase, every member of the population 

engages in independent study and practice in an effort to 

further develop the capabilities obtained during the first phase. 

This concept is modelled as local search in SOA with the 

intention of increasing exploitation in such a way that each 

member, in the neighbourhood of its position, seeks better 

conditions to improve the value of its objective function. This 

is done in such a way that the overall goal is to increase 

exploitation (which indicates the level of skill). In the same 

way as the phase before it, the newly computed location in this 

phase is considered acceptable if it results in an increase in the 

value of the goal function. Eqs. (7) and (8) are used to provide 

a mathematical description of the concepts involved in this 

step of SOA updating. 

 

         (7) 

                   (8) 
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Here, XP2 denotes the newly computed status of the ith 

candidate solution based on the second phase, xP2 denotes its 

dth dimension, FP2 denotes the value of its objective function, 

t denotes the iteration counter, and lbj and ubj denote the lower 

and upper bounds of the jth variable, respectively. 

Table 3. Mean values of Evaluation results of Unimodal functions [63-64] 
 

GA PSO GSA TLBO GWO MVO WOA TSA MPA RFO SOA 

F1 21.26981 0.00051 7.68E-17 4.29E-61 1.3E-

100 

0.2071

25 

6.5E-

82 

3.21E

-82 

5.99E

-86 

6.46E-84 0 

F2 1.569531 0.591161 3.95E-08 4.47E-32 1.8E-

58 

0.3003

54 

2.2E-

175 

1.82E

-48 

2.67E

-47 

6.78E-46 4.6E-191 

F3 2081.245 1393.67 185.0622 1.03E-19 6.47E-

29 

21.448

54 

6629.

856 

3.65E

-21 

7.73E

-23 

4.67E-58 0 

F4 2.69652 4.39557 1.05E-08 3.98E-25 9.73E-

25 

0.6284

21  

35.21

117  

1.01E

-05  

1.23E

-32  

1.34E-35  

 

1.9E-181  

3.3.3. The Sequential Object Architecture's 

Repetition Process  

After all of the members of SOA have been brought up to 

date based on the first and second phases, the first iteration of 

SOA has been finished. The algorithm will then proceed to the 

subsequent iteration, at which point the process of updating 

will be performed in accordance with Equations (5) to (8). 

When the SOA has been completely implemented, the output 

will contain the best potential solution. The flowchart for the 

SOA is displayed in Figure 6. 

Table 3 shows the mean value in the evaluation results of 

Unimodal functions of different algorithms compared to SOA 

taken from the work done in [63-64]. From the mean values 

of evaluation results of unimodal functions, it is clear that 

SOA is superior compared to every other algorithm in terms 

of optimization. A similar trend is followed for multimodal 

functions. In Table 3, the mean values for unimodal functions 

F1 - F4 is presented demonstrating the superiority of SOA but 

a similar trend is noticed for higher levels of function beyond 

F4. 

4. Simulation Results and Analysis 

4.1. The Sequential Object Architecture's Repetition 

Process System Performance Evaluation of CPSS 

Controllers Considering Symmetrical Three Phase 

Fault  

The multi-machine two-area ten buses system simulation 

has been performed with CPSS, and a MLNFPSS have been 

discussed in this section. First, we investigated the dynamics 

system performance of the power system with conventional 

PSS, illustrated in Figure. 7. The dynamic response 

oscillations are not well damped for all generators. The MLNF 

technique cascaded of the CPSS is a more robust than CPSS 

and it significantly damps the oscillations of the studied 

system, as shown in Figure .8. The SOA adjusts these two 

controllers by reducing the time-domain. The cost function 

values in this optimization are subjected to the constraint 

given Eq. (2). This operation is carried out by adjusting the 

Neuro-Fuzzy PSS's input-output scaling factors and 

conventional PSS's gains. The optimum values of the 

controllers' parameters are illustrated in Table 4. 

 

Table 4. Optimum values of controller gains and scaling 

factors for various controllers  

  Gains/scaling  

factors 

CPSS  MLNFPSS 

kp1 0.1627 0.251 

kd1 0.378 0.0362 

kp2 0.494 35.679 

kd2 0.221 0.1223 

kp3 0.0807 0.0229 

Kd3 0.028 0.0264 

Kp4 0.2179 0.2483 

kd4 0.1285 0.1810 

N1 49.85 87.73 

N2 60.878 76.33 

N3 57.571 88.783 

N4 35.679 77.475 

k1 ------- 0.0931 

k2 ------- 0.302 

k3 ------- 0.291 

k4 ------- 0.212 

k5 ------- 0.456 

k6 ------- 0.425 

k7 ------- 0.271 

k8 ------ 0.0995 

k9 ------- 0.5966 

k10 ------- 0.354 

k11 ------- 0.445 

k12 ------- 0.476 

 

Figure 7 depicts the system performance investigation of 

the CPSS of the machine power system when a short circuit 

fault occurs in the mid of the transmission line. The MMPS 

has reached a steady state but is not well damped. The CPSS 

controller requires further development to stabilize the 

MMPS. Figure 7a represents the active power transfer from 

area 1 to area 2. The undershoot time is 196ms, the overshoot 

time is 464ms while the settling time is 4.5s. Figure 7b 

represents the active power transfer from each generators from 

generator 1 to generator 4. We can notice that the active power 

transferred is the same for the generators. The undershoot time 
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is -0.3s, the overshoot time is 0.5s while the settling time is 

4.5s. Figure 7c represents the generator speed for each 

generators from generator 1 to generator 4. Generator 3 and 

Generator 4 is responsible for the highest value of undershoot 

and overshoot among the generators. The generators 1 and 2 

have lower values of undershoot and overshoot. The 

undershoot time is 0.983s, the overshoot time is 1.004s while 

the settling time is 16s. Figure 7d represents the terminal 

voltage of each generator with time. The terminal voltage 

undershoot is due to generator 3 and the generator overshoot 

is due to generator 1. The undershoot time is 0.8998s, the 

overshoot time is 1.253s while the settling time is 11.5s. 

 

Fig. 7 a. Active power transfer from area-1 to area -2(Pa) 

 

Fig. 7 b. Active power for each generator (Pa) 

 

Fig. 7 c. Rotor speed of each generator (ɷ) 

 

Fig. 7 d. Terminal voltage of each generator (Vt) 

4.2. System Performance Evaluation of MLNFPSS 

Considering Symmetrical Three Phase Fault  

A novel MLNFPSS controller has been suggested in this 

study. It is a cascade of traditional PD with a filter coefficient 

that mimics the lead-lag correction of a traditional PSS in 

oscillation frequency. This suggestion has primarily improved 

the oscillations' damping and robustness against operation 

points and certain critical parameter variations of a 

significantly disturbed MMPS. This MLFN based PSS 

collaborative design was carried out with the help of a newly 

developed human-based Metaheuristic Optimization 

technique, SOA, which is fast and capable of finding complex 

multi-parameter structures of the overall system in general. 

Dynamic analysis was used to optimize the design, and the 

time-domain speed integral time squared, ISE, was chosen as 

the fitness function to minimize. In the case of a four-

generator-ten-bus power system, the obtained results 

demonstrated the superiority of the present MLNF based 

stabilizer over the classic PSS regarding settling time, 

overshoots, and undershoots. A complete testing process has 

been presented in the proposed MLNFPSS by considering a 

symmetrical three-phase fault in the middle of the 

transmission line. 

Figure 8 depicts the system performance of a MLNFPSS 

when a symmetrical three-phase fault in the middle of the 

transmission line is considered. The MMPS requires less 

settling time and amplitude oscillation to achieve a steady 

state. The MLNFcascaded controller is more robust than 

CPSS and significantly damped the oscillations of the studied 

system. Figure 8a represents the active power transfer from 

area 1 to area 2. The undershoot time is 242.7ms, the 

overshoot time is 442.6ms while the settling time is 9s. Figure 

8b represents the active power transfer from each generators 

from generator 1 to generator 4. We can notice that the active 

power transferred is the same for the generators. The 

undershoot time is -0.15s, the overshoot time is 0.07s while 

the settling time is 3.8s. Figure 8c represents the generator 

speed for each generators from generator 1 to generator 4. 

Generator 3 and Generator 4 is responsible for the highest 

value of undershoot and overshoot among the generators. The 

generators 1 and 2 have lower values of undershoot and 

overshoot. The undershoot time is 0.998s, the overshoot time 

is 1.00s while the settling time is 10s. Figure 8d represents the 
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terminal voltage of each generator with time. The terminal 

voltage undershoot is due to generator 3 and the generator 

overshoot is due to generator 1. The undershoot time is 0.986s, 

the overshoot time is 1.182s while the settling time is 3.5s. 

Table 3 shows the comparison of undershoot, overshoot and 

settling time of CPSS and MLNFPSS. 

When the proposed controller is compared to the 

traditional PSS, a significant reduction in time is observed and 

this leads to stabilization of the power system. 

 

Fig. 8 a. Active power transfer from area-1 to area -2(Pa) 

 

Fig. 8 b. Active power transfer from area-1 to area -2(Pa) 

 

Fig. 8 c. Active power transfer from area-1 to area -2(Pa) 

 

Fig. 8 d. Active power transfer from area-1 to area -2(Pa) 

Moreover, the terminal voltages of the generator show 

that the proposed controller integrated with PSS takes only 3.5 

seconds to completely dampen the system oscillations, 

whereas PSS takes 11.5 seconds to control the system 

oscillations. The MLNFPSS was settled by 69.56% faster than 

CPSS. Table 5 demonstrates the comparison of CPSS with 

MLNFPSS in terms of overshoot, undershoot, and settling 

time for the various control actions. 

Table 5. Comparison of conventional PSS (CPSS) and MLNFPSS  

Control action controllers undershoot Overshoot Settling time(s) 

Power transfer from A1-

A2(MW) 

CPSS 196ms 464ms 14.5 

MLNFPSS 242.7 ms 442.6 ms 9 

Active power 

Pa (p.u) 

CPSS -0.3s 0.5s 4.5 

MLNFPSS -0.15s 0.07s 3.8 

Rotor speed 

ɷ (p.u) 

CPSS 0.983s 1.004s 16 

MLNFPSS 0.998s 1.00s 10 

Terminal voltage (Vt) (p.u) CPSS 0.8998s 1.253s 11.5 

MLNFPSS 0.986s 1.182s 3.5 

 

The work done by Rana MJ et al.[34] first introduced the 

idea of using neuro fuzzy controller for PSS. The work done 

by Rajbongshi et al. [35] further explored the use of neuro 

fuzzy controllers. In this paper, we utilised a MLFNPSS in 

contranst to a single level NFPSS[5],[9]. Furthermore,, the 

work done by [34] and [35] used the LM and LS algorithms 
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for optimization while our paper demonstrated the SOA 

algorithm for optimizing the controller gains. The SOA has 

been proven to be better in terms of convergence speed and 

accuracy against GA [45].TS [46], SA [47], DEA[48], PSO 

[49], IA [50]. We implemented the CPSS [37] and the 

MLNFPSS. In comparison to the CPSS, which had 

undershoot, overshoot, and settling times of 0.8998s, 1.253s, 

and 11.5s, the terminal voltage of the SOA-based MLFPSS 

has undershoot, overshoot, and settling times of 0.986s, 

1.182s, and 3.5s. As a result, the SOA based MLNFPSS was 

settled 69.56% in only 3.5 seconds as opposed to 11.5 seconds 

for CPSS. This clearly demonstrates the superiority of the 

MLNFPSS. 

5. Conclusion 

In this research, schemes of damping and controller 

stability assessments are analyzed critically with the goal of 

improving the performance of a MMPS by finding solutions 

to the difficulties that currently exist. This article describes a 

method for enhancing power system stability that makes use 

of the SOA to improve the traditional PSS gains and the 

Neuro-Fuzzy inputs-output scaling factors parameters. This 

method is presented in this article. The purpose of this 

research was to suggest a MLNFPSS, with the end goal of 

increasing the degree to which a MMTAPS remains stable in 

the face of fault circumstances. The simulations were done on 

a power system with two areas and many machines, with a 

transmission line problem in the centre of the system. 

According to the findings, the reaction of the suggested 

MLNFPSS is more resilient than that of the standard PSS 

when symmetrical three-phase faults are present. In 

comparison to the CPSS, which had undershoot, overshoot, 

and settling times of 0.8998s, 1.253s, and 11.5s, the terminal 

voltage of the SOA-based MLFPSS has undershoot, 

overshoot, and settling times of 0.986s, 1.182s, and 3.5s. As a 

result, the SOA based MLNFPSS was settled 69.56% in only 

3.5 seconds as opposed to 11.5 seconds for CPSS. Using 

MATLAB 2016b/Simulink, each of the control schemes has 

been put into action, and the outcomes of the simulation have 

been analysed. 

References 

[1] H. Abouelgheit., "Information and Communication 

Technologies in Modern Electrical Networks: A Brief 

Review," International Journal of Smart Grid, vol. 6 (2), 

pp.40 - 47, 2022. 

[2] A. Oymak, and M. R. Tur., " A Short Review on the 

Optimization Methods Using for Distributed Generation 

Planning," International Journal of Smart Grid, vol. 6 (3), 

pp.54 - 64, 2022. 

[3] Z. N. Bako, M. A. Tankari, G. Lefebvre, and A. S. Maiga, 

“Optimal sizing and location of the power plant in multi-

villages microgrid,” in 2018 7th International Conference 

on Renewable Energy Research and Applications 

(ICRERA), 2018. 

[4] M. L. Kothari, J. Nanda, and K. Bhattacharya, “Design of 

variable structure power system stabilizers with desired 

eigen values in the sliding mode,” IEE Proceedings C 

Generation, Transmission and Distribution, vol. 140, no. 

4, p. 263, 1993.  

[5] A. Hariri and O. P. Malik, “Adaptive-network-based 

Fuzzy Logic Power System Stabilizer,” IEEE WESCANEX 

95. Communications, Power, and Computing. Conference 

Proceedings, pp. 111–116, 1995.  

[6] Hoang, P. and K. Tomosovic, “Design and Analysis of an 

Adaptive Fuzzy Power System Stabilizer.” IEEE 

Transaction Energy Conversion, Vol. 11. 1996. 

[7] Abido. M.A. and L. Abdel-Magid. “Design of power 

system stabilizers using evolutionary programming.” 

IEEE Transaction on Energy Conversion, Vol. 17. 2000. 

[8] B. Saleem, R. Badar, A. Manzoor, M. A. Judge, J. 

Boudjadar, and S. U. Islam, “Fully adaptive recurrent 

Neuro-fuzzy control for power system stability 

enhancement in Multi Machine System,” IEEE Access, 

vol. 10, pp. 36464–36476, Apr. 2022.  

[9] B. Douidi, L. Mokrani, and M. Machmoum, “A new 

cascade fuzzy power system stabilizer for multi-machine 

system stability enhancement,” Journal of Control, 

Automation and Electrical Systems, vol. 30, no. 5, pp. 

765–779, Jun. 2019.  

[10] N. M. A. Ibrahim, B. E. Elnaghi, H. A. Ibrahem, and H. 

E. A. Talaat, “Modified particle swarm optimization based 

on lead-lag power system stabilizer for improve stability 

in multi-machine power system,” International Journal on 

Electrical Engineering and Informatics, vol. 11, no. 1, pp. 

161–182, Mar. 2019.  

[11] S. Sharma and S. Narayan, “Damping of low frequency 

oscillations using robust PSS and TCSC controllers,” 8th 

International Conference on Computing, Communication 

and Networking Technologies (ICCCNT), Jul. 2017.  

[12] C. Zhang, D. Ke, Y. Sun, C. Y. Chung, J. Xu, and F. 

Shen, “Coordinated Supplementary Damping Control of 

DFIGURE  and PSS to Suppress Inter-Area Oscillations 

With Optimally Controlled Plant Dynamics,” IEEE Trans. 

Sustain. Energy, vol. 9, no. 2, pp. 780–791, Apr. 2018.  

[13] N. C. Patel, M. K. Debnath, B. K. Sahu, S. S. Dash, and 

R. Bayindir, “Multi-staged PID controller tuned by 

invasive weed optimization algorithm for LFC issues,” 

in 2018 7th International Conference on Renewable 

Energy Research and Applications (ICRERA), 2018.  

[14] L. Racz, D. Szabo, G. Gocsei, and B. Nemeth, “Grid 

management technology for the integration of renewable 

energy sources into the transmission system,” in 2018 7th 

International Conference on Renewable Energy Research 

and Applications (ICRERA), 2018.  

[15] F. Milla and M. A. Duarte-Mermoud, “Predictive 

optimized adaptive PSS in a single machine infinite bus,” 

ISA Trans., vol. 63, pp. 315– 327, Jul. 2016.  

[16] R. Jalayer and B.-T. Ooi, “Co-Ordinated PSS Tuning of 

Large Power Systems by Combining Transfer Function-

Eigenfunction Analysis (TFEA), Optimization, and 

Eigenvalue Sensitivity,” IEEE Trans. Power Syst., vol. 29, 

no. 6, pp. 2672–2680, Nov. 2014.  

[17]  T. Surinkaew and I. Ngamroo, “Coordinated Robust 

Control of DFIGURE  Wind Turbine and PSS for 

Stabilization of Power Oscillations Considering System 

Uncertainties,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, 

pp. 823–833, Jul. 2014.  

https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/245
https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/245
https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/245


INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. Ramshanker et al., Vol.12, No.4, December 2022 

2165 
 

[18] Z. Assi Obaid, L. M. Cipcigan, and M. T. Muhssin, 

“Power system oscillations and control: Classifications 

and PSSs’ design methods: A review,” Renew. Sustain. 

Energy Rev., vol. 79, pp. 839–849, Nov. 2017.   

[19]  A. A. Ghandakly and P. Idowu, “Design of a model 

reference adaptive stabilizer for the exciter and governor 

loops of power generators,” IEEE Trans. Power Syst., vol. 

5, no. 3, pp. 887–893, 1990  

[20] S. Chen and O. P. Malik, “Power system stabilizer design 

using μ synthesis,” IEEE trans. energy convers., vol. 10, 

no. 1, pp. 175–181, 1995 

[21] N.C. Giri, S.P. Mishra, and R.C. Mohanty, “Performance 

Parameters, Optimization, and Recommendation in Large 

Scale On-Grid SPV Power Plant, Odisha, India,” 

International Journal of Modern Agriculture, vol. 9, 

pp.159-167, 2021. 

[22] C. A. Jacobson, A. M. Stankovic, G. Tadmor, and M. A. 

Stevens, “Towards a dissipativity framework for power 

system stabilizer design,” IEEE Trans. Power Syst., vol. 

11, no. 4, pp. 1963–1968, 1996  

[23] W. Qiu, V. Vittal, and M. Khammash, “Decentralized 

power system stabilizer design using linear parameter 

varying approach,” IEEE Trans. Power Syst., vol. 19, no. 

4, pp. 1951–1960, 2004  

[24]  A. A. Ba-muqabel and M. A. Abido, “Review of 

conventional power system stabilizer design methods,” 

in 2006 IEEE GCC Conference (GCC), 2006  

[25] S. Pereira, P. Ferreira, and A. I. F. Vaz, “Optimization 

modeling to support renewables integration in power 

systems,” Renew. Sustain. Energy Rev., vol. 55, pp. 316–

325, 2016.  

[26] A. R. Jordehi, “Optimisation of electric distribution 

systems: A review,” Renew. Sustain. Energy Rev., vol. 51, 

pp. 1088–1100, 2015.  

[27] A. Sabo, N. I. A. Wahab, M. L. Othman, M. Z. A. B. M. 

Jaffar, H. Acikgoz, H. Nafisi, and H. Shahinzadeh, 

“Artificial intelligence-based power system stabilizers for 

frequency stability enhancement in multi-machine power 

systems,” IEEE Access, vol. 9, pp. 166095–166116, 2021. 

[28] B. Saleem, R. Badar, A. Manzoor, M. A. Judge, J. 

Boudjadar, and S. U. Islam, “Fully adaptive recurrent 

neuro-fuzzy control for power system stability 

enhancement in multi machine system,” IEEE Access, vol. 

10, pp. 36464–36476, 2022. 

[29] B. Saleem, R. Badar, A. Manzoor, M. A. Judge, J. 

Boudjadar, and S. U. Islam, “Fully adaptive recurrent 

neuro-fuzzy control for power system stability 

enhancement in multi machine system,” IEEE Access, vol. 

10, pp. 36464–36476, 2022.  

[30] K. M. Sreedivya, P. Aruna Jeyanthy, and D. Devaraj, 

“Improved design of interval type-2 fuzzy based wide area 

power system stabilizer for inter-area oscillation 

damping,” Microprocess. Microsyst., vol. 83, no. 103957, 

p. 103957, 2021. 

[31] R. Devarapalli, and V. Kumar, “Power system oscillation 

damp- ing controller design: a novel approach of 

integrated HHO-PSO algorithm”, Archiv Control Sci, vol. 

31, no. 3, pp. 553–591, 2021. 

[32] R. Devarapalli, B. Bhattacharyya, and A. Kumari, “A 

novel approach of intensified barnacles mating 

optimization for the mitigation of power system 

oscillations,” Concurr. Comput., vol. 33, no. 17, 2021. 

[33] R. Devarapalli, and B. Bhattacharyya, “A novel hybrid 

AGWO-PSO algorithm in mitigation of power network 

oscillations with STATCOM”, Numerical Algebra, 

Control and Optimization, vol 11, no. 4, pp. 579-611, 

2021.  

[34] R. Devarapalli, B. Bhattacharyya, and N. K. Sinha, “An 

intelligent EGWO‐SCA‐CS algorithm for PSS parameter 

tuning under system uncertainties,” Int. J. Intell. Syst., vol. 

35, no. 10, pp. 1520–1569, 2020. 

[35] H. Vennila, N. C. Giri, M. K. Nallapaneni, P. Sinha, M. 

Bajaj, M. Abou Houran, and S. Kamel, “Static and 

dynamic environmental economic dispatch using 

tournament selection based ant lion optimization 

algorithm,” Front. Energy Res., vol. 10, 2022. 

[36] P. R. Sahu, P. K. Hota, and S. Panda, “Modified whale 

optimization algorithm for coordinated design of fuzzy 

lead‐lag structure‐based SSSC controller and power 

system stabilizer,” Int. trans. electr. energy syst., vol. 29, 

no. 4, p. 2797, 2019. 

[37] B. Dasu, M. Sivakumar, and R. Srinivasarao, 

“Interconnected multi-machine power system stabilizer 

design using whale optimization algorithm,” Prot. control 

mod. power syst., vol. 4, no. 1, 2019.  

[38] M. J. Rana, M. S. Shahriar, and M. Shafiullah, 

“Levenberg–Marquardt neural network to estimate UPFC-

coordinated PSS parameters to enhance power system 

stability,” Neural Comput. Appl., vol. 31, no. 4, pp. 1237–

1248, 2019. 

[39]  R. Rajbongshi and L. C. Saikia, “Performance of 

coordinated interline power flow controller and power 

system stabilizer in combined multiarea restructured 

ALFC and AVR system,” Int. trans. electr. energy syst., 

vol. 29, no. 5, p. e2822, 2019. 

[40] R. Devarapalli and B. Bhattacharyya, “Optimal 

parameter tuning of power oscillation damper by MHHO 

algorithm,” in 2019 20th International Conference on 

Intelligent System Application to Power Systems (ISAP), 

2019.  

[41] R. Devarapalli and B. Bhattacharyya, “Application of 

modified Harris hawks optimization in power system 

oscillations damping controller design,” in 2019 8th 

International Conference on Power Systems (ICPS), 2019. 

[42] M. Bagheri, A. Mukhatov, O. Abedinia, M. S. Naderi, 

M. S. Naderi, and N. Ghadimi, “Application and design of 

new controller based on fuzzy PID and FACTS devices in 

multi-machine power system,” in 2018 IEEE International 

Conference on Environment and Electrical Engineering 

and 2018 IEEE Industrial and Commercial Power Systems 

Europe (EEEIC / I&CPS Europe), 2018. 

[43] W.M. Thu, and K.M. Lin, “Mitigation of low frequency 

oscil- lations by optimal allocation of power system 

stabilizers: case study on MEPE test system”, Energy and 

Power Engineering, vol.10, pp.333–350, 2018. 

[44]  P. Dey, A. Bhattacharya, and P. Das, “Tuning of power 

system stabilizer for small signal stability improvement of 

interconnected power system,” Appl. Comput. Inform., 

vol. 16, no. 1/2, pp. 3–28, 2017. 

[45] J.D. Herrera, and M.A. Rios, “A Multiobjective damping 

function for coordinated control of power system stabilizer 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. Ramshanker et al., Vol.12, No.4, December 2022 

2166 
 

and power oscillation damping”, Int J Energy Power Eng, 

vol. 11, no. 12, pp. 1183–1189, 2017. 

[46] S. Santra and S. Paul, “PSO based robust power system 

stabilizer design using mixed sensitivity based H output-

feedback control in LMI approach,” in 2017 Third 

International Conference on Research in Computational 

Intelligence and Communication Networks (ICRCICN), 

2017. 

[47] A. Khodabakhshian, M. R. Esmaili, and M. Bornapour, 

“Optimal coordinated design of UPFC and PSS for 

improving power system performance by using multi-

objective water cycle algorithm,” Int. j. electr. power 

energy syst., vol. 83, pp. 124–133, 2016. 

[48]  G. Shahgholian et al., “Power system oscillations 

damping by optimal coordinated design between PSS and 

STATCOM using PSO and ABC algorithms,” in 2016 

13th International Conference on Electrical 

Engineering/Electronics, Computer, Telecommunications 

and Information Technology (ECTI-CON), 2016.   

[49] L. H. Hassan, M. Moghavvemi, H. A. F. Almurib, K. M. 

Muttaqi, and V. G. Ganapathy, “Optimization of power 

system stabilizers using participation factor and genetic 

algorithm,” Int. j. electr. power energy syst., vol. 55, pp. 

668–679, 2014.  

[50] Y. A. Katsigiannis, P. S. Georgilakis, and E. S. 

Karapidakis, “Hybrid Simulated Annealing–Tabu Search 

Method for Optimal Sizing of Autonomous Power 

Systems With Renewables,” IEEE Trans. Sustain. Energy, 

vol. 3, no. 3, pp. 330–338, Jul. 2012.   

[51] K. R. M. Vijaya Chandrakala and S. Balamurugan, 

“Simulated annealing based optimal frequency and 

terminal voltage control of multi source multi area 

system,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 

823–829, Jun. 2016.  

[52] P. Acharjee, “Optimal power flow with UPFC using 

security constrained self-adaptive differential evolutionary 

algorithm for restructured power system,” Int. J. Electr. 

Power Energy Syst., vol. 76, pp. 69–81, Mar. 2016.  

[53]  Jong-Bae Park, Yun-Won Jeong, Joong-Rin Shin, and 

K. Y. Lee, “An Improved Particle Swarm Optimization for 

Nonconvex Economic Dispatch Problems,” IEEE Trans. 

Power Syst., vol. 25, no. 1, pp. 156–166, Feb. 2010.  

[54] S. A. Taher and S. A. Afsari, “Optimal location and 

sizing of DSTATCOM in distribution systems by immune 

algorithm,” Int. J. Electr. Power Energy Syst., vol. 60, pp. 

34–44, Sep. 2014.  

[55] H. A. Yousef, K. AL-Kharusi, M. H. Albadi, and N. 

Hosseinzadeh, “Load frequency control of a multi-area 

power system: An adaptive fuzzy logic approach,” IEEE 

Trans. Power Syst., vol. 29, no. 4, pp. 1822–1830, 2014. 

[56] S. A. Taher and S. A. Afsari, “Optimal location and 

sizing of DSTATCOM in distribution systems by immune 

algorithm,” Int. J. Electr. Power Energy Syst., vol. 60, pp. 

34–44, Sep. 2014.  

[57] C. Das, A. K. Roy, and N. Sinha, “GA based Frequency 

Controller for solar thermal–diesel–wind hybrid energy 

generation/energy storage system,” International Journal 

of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 

262–279, Dec. 2012. 

[58] D. Shakibjoo, M. Moradzadeh, S. U. Din, A. 

Mohammadzadeh, A. H. Mosavi, and L. Vandevelde, 

“Optimized type-2 fuzzy frequency control for Multi-Area 

Power Systems,” IEEE Access, vol. 10, pp. 6989–7002, 

2022. 

[59] Z. Zhang, E. Du, F. Teng, N. Zhang, and C. Kang, 

“Modeling Frequency Dynamics in unit commitment with 

a high share of renewable energy,” IEEE Transactions on 

Power Systems, vol. 35, no. 6, pp. 4383–4395, Nov. 2020. 

[60] Pilla, Azar, and Gorripotu, “Impact of flexible AC 

transmission system devices on automatic generation 

control with a metaheuristic based Fuzzy PID Controller,” 

Energies, vol. 12, no. 21, p. 4193, Nov. 2019. 

[61] S. K. Ramoji and L. C. Saikia, “Comparative 

performance of multiple energy storage systems in unified 

voltage and frequency regulation of power system 

including Electric Vehicles,” Energy Storage, Jun. 2022.  

[62] Hadi Givi (2022). Skill Optimization Algorithm 

(SOA) (https://www.mathworks.com/matlabcentral/fileex

change/110675-skill-optimization-algorithm-soa), 

MATLAB Central File Exchange. Retrieved October 7, 

2022. 

[63] H. Givi and M. Hubalovska, "Skill optimization 

algorithm: a new human-based metaheuristic 

technique," Computers, Materials & Continua, vol. 74, 

no.1, pp. 179–202, 2023. 

 


