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Abstract - Challenges in remote electricity supply include absent grid infrastructure, geographical barriers hindering 

conventional power installation, intermittent renewable sources impacting consistency, and limited funding impeding reliable 

energy solutions.In the light of these challenges, standalone hybrids renewable resources, which include sources of energy that 

replicate sunlight, wind, and other sources of renewable energy, were proven to be an efficient solution for bringing power to 

isolated areas which aren't linked to utility systems. The availability of sufficient supplies of energy is constrained by a variety 

of reasons, involving variations in peak demand, power outages, and other elements. This paper responds to these issues by 

presenting a comprehensive strategy for effectively harnessing and distributing hybrid renewable energy sources. The key 

innovation lies in the integration of predictive modeling and advanced optimization techniques. The strategy's core framework 

leverages the initial utilization of Long Short-Term Memory (LSTM) systems to anticipate weather conditions and load demands, 

enabling the quantification of uncertainty in energy needs. This predictive capability is pivotal for achieving optimal resource 

allocation.The goal of doing this is to aid in optimum resources scaling. Central to the proposed approach is the incorporation of 

the shuffled shepherd optimization algorithm. By merging this algorithm with forecasted data, the paper outlines a methodology 

for efficiently allocating energy resources. This allocation process, underpinned by real-time predictions, is pivotal for optimizing 

energy utilization and minimizing inefficiencies.The framework's effectiveness is evaluated using a range of pertinent 

performance metrics, including fluctuation rates, battery power, Loss of Power Supply Probability (LPSP), prediction accuracy, 

net current costs, and overall power cost. These metrics facilitate a comprehensive assessment, showcasing the proposed 

strategy's superiority over existing approaches. 

Keywords: Solar PV Systems, Renewable energy systems, energy management, and optimum Sizing. 

1. Introduction 

There are many applications for RESs, including solar and 

wind energy. At the moment, attention has been placed on 

HRES, including solar-wind, PV hydrogen, and many more 

[1], [2]. An example of an intelligent house would have a 

television (80W), fans (40W), refrigerator, and LED bulb 

(20W) (200W). The total amount of electricity required 

for contemporary architecture is 340W, with individual 

electrical demands for each element. Presently, various 

applications of Renewable Energy Sources (RESs), including 

solar and wind energy, are explored, with a notable emphasis 

on HRES configurations such as solar-wind and PV hydrogen 

systems. Off-grid HRES represents a paradigm shift, detaching 

the hybrid system from electrical grids to achieve self-

sufficiency. Off-grids HRES makes it clear that the hybrid 

system is no longer reliant on the electrical grids and cannot 

communicate with them. In this case, the full load has to be 
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powered by the HRES’s output [3] [4] [5] . HRES size has 

become the key problem that significantly affects the 

administration of power. An optimum design is a process of 

selecting the appropriate state parameters, including the 

number of winds-turbines, photovoltaic panels, and batteries 

for the standalone HRES [6], [7]. The challenge of 

unpredictability is addressed in optimum sizing since dynamic 

energy production is challenging and essential for immediate 

power supply. For example, the relevance of loads changes 

depending on weather conditions and other external variables. 

In order to reduce the energy costs (COE) as well as the current 

value costs (NPC), HRES is scaled ideally. The COE and NPC 

are minimized and the oscillation rates are decreased during 

this period due to the greatest demand and electricity-

generated estimates [8], [9]. Nevertheless, excessive energy 

use is also a significant issue. The administration of batteries 

specifically must be optimal; alternatively, upgrades would 

have to be done more often, thereby increasing the cost. State 

of Charging (SOC) handling is among the best methods for 

controlling power. In order to control the SOS levels, the 

power-limiting mechanism is employed. For a number of 

purposes, ML and deep learning (DL) techniques are often 

used in HRESs. Numerous variables, which include systems 

weight, electrical mileage, and batteries degradation, have to 

be considered into account in order to maximize the system's 
efficiency, battery's degradation, and systems weight. When an 

independent micro-grid is in operation, it may utilize a variety 

of responsible resources, including biomass, solar energy, 

hydroelectric power, marine, and so on. PV/WT is used to 

determine the ideal size of electric hybrid systems. The micro-

grids help with higher voltages production of energy along 

with acting as utility grids in the event of natural catastrophes. 

The microgrids may examine the consequences of possessing 

a significant quantity of renewable power linked to this, 

disperse system frequencies, and apply voltage control 

strategies. As a result, the microgrid's loads dispatching system 

is an essential process [10]. For predicting load, a number of 

methods are used, involving Deep Recurrent Networks, ANN, 

and SVM. The off-grid hybrids renewable technology used to 

choose the great supplies for addressing power shortages at 

peak times. Several agents have been implemented by the off-

grid HRES to help with the management of energy. But 

increasing the number of agents also increases the cost. There 

are many more methods in the domain of optimum size 

presented by HRES. Several optimizing strategies, such as the 

PSO technique, the cuckoo search technique, and more were 

presented to address issues with optimum scaling. Limiting the 

possibility that HRES could be linked to the grids is crucial to 

the achievement of the goals. The enormous amount of 

historical data is frequently taken into consideration using the 

optimal size approach. As an outcome, the techniques for 

optimization are unable to manage the huge volume of entering 

data. Additionally, PSO, CS, and SA have greater difficulties 

with convergence than the other methods, which leads to 

inadequate scaling. The study's synthesis involves a 

combination of predictive frameworks and optimal sizing, 

with climate forecasting performed by neural networks and 

load prediction utilizing ML and DL techniques. These 

anticipated outcomes are pivotal for establishing effective 

HRES solutions and addressing energy challenges. In light of 

these considerations, the study aims to contribute to the 

advancement of off-grid HRES design, addressing its 

challenges and optimizing its performance. 

2. Related Work  

According to [11], in the setting of irregular wind and 

solar energy resources, the efficacy of integrated renewable 

battery banks, smart-grids transmission of power innovations, 

and other alternative sources of power are estimated. The 

investigation provided the MORSO with a hybrid control 

algorithms with predictive modeling (MPC) for renewable 

energy sources and intelligent grid power system electrical 

voltage regulation solution. The difficulties with tuning 

variables in the control of frequencies are addressed by 

achieving online adjustment of the LFC variables using the 

advised altering regulate approach. The solution under 

discussion is a closed-loop structure that combines wind, 

photovoltaic, FC, and batteries can adjust its load while 

integrating with the power grids. To get the greatest outcomes, 

all of the controllers configurations in various energy grid units 

are developed utilizing a tailored optimum approach and the 

particle swarm optimizations technique rather than a 

traditional function of objective with fluctuations restrictions. 

For the purpose of reducing the disparities between 

consumption and production, MPCs were developed for the 

forecasting Pv generations, winds-turbines, and battery banks. 

In this approach, electricity produced is also utilized to reduce 
the regularity of the controlled loads. The efficiency, 

reliability, adaptability, and stability of the suggested approach 

are examined as they relate to the energy systems in the 

Simulink/Matlab system while evaluating the recommended 

maintenance technique. The simulated results demonstrate that 

the suggested control method frequently approaches an ideal 

operating position, which lowers total users' disutility, restores 

regular frequencies and planned tie-line reactive and keep up 

the transmission line's temperature limits. Additionally, the 

different results demonstrate that convergence continues 

approach uses the wrong hyper-parameters. Lastly, 

computerized simulations are employed to show how the 

suggested technique is resilient, optimum, and effective. In 

contrast with earlier systems, it is also demonstrated 

that frequency regulation restores effectively in energy usage. 

An evaluating approach is additionally employed to determine 

how effective the recommended approach performs. This 

work offers forecasts about the performance of integrated 

battery/FC/Wind/PV maintaining and smart-grids  for power 

in the context of irregular wind and solar power supplies. The 

research presented an electric controlling system for a grid 

generation system depending on MOPSO hybrids and MPC 

hybrid RESs. Utilizing the suggested adaptive control 

technique, the problems with choosing parameters in the 

control of load frequencies are addressed by an online change 

of the load's frequency maintenance features.  

The smart grid that combines winds, photovoltaic, FC, and 

batteries with variable commanding loads is the method under 

study. To get the best output, all of the regulators' settings for 

lot of different units including energy grids are built utilizing 

a tailored optimization issue and an optimized particle-

swarming approach, as opposed to employing a typical 

function of objectives with switching limitations. For the 

storage batteries, winds turbine, and forecasting Pv 
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generations, MPCs were developed to manage consumption 

and production in a positive way. This design also included 

electricity generation to decrease the frequency of the 

controlled loads. The efficiency, reliability, adaptability, and 

stability of the suggested technique as it relates to the electrical 

system are examined in the Simulink/Matlab domain. The 

findings show that the suggested method can control 

frequently approaches an ideal operating position that 

decreases total user circumstances, recovers typical 

frequencies and established tie-line reactive energy flows, and 

maintains transposition line temperatures constraints. 

Additionally, the results from the micro-experiments 

demonstrate that converging continues even when the 

controlling mechanism uses the wrong settings. Additionally, 

computational simulations are employed to establish the 

suggested strategy's robustness, optimal performance, and 

effectiveness. As demonstrated, as compared to earlier 

systems, frequency regulation restores cheaply and effectively 

in the event of an energy usage disruption.  

The sensitivity test additionally serves to access the 

suggested method[12]. The massive LSS PV tries to bridge the 

void as Malaysia gets ready to switch power. The management 

aims to increase the share of renewable power in the generating 

combination to 20% by 2025. In both the initial and second 

stages of the LSS system, 958 MW of PV installations are 
anticipated to be finished by 2020. An overall capability of 500 

MW is the goal of the third phase of the LSS scheme. Due to 

its unpredictable nature, the LSS Photovoltaic array presents 

the biggest integration difficulty for the worldwide electrical 

system. The goal of this study is to identify Malaysia's LSS's 

best possible energy system tactical strategy for managing 

instability in voltage utilizing an IEEE-bus architecture. 

Restricted PSS/E and PVSyst perform simulation and 

administration of the networks type. The goal of this study is 

to develop an LSS-integrated grid technique that reduces loss 

in transmission while meeting the requirements of the 

Malaysian grid codes for energy. Harmony is also addressed 

while including energy electrical devices for flexible power 

adaptation. This study is designed to serve as a benchmark for 

providers of utilities in other countries with similar networks 

and grids settings [13] [14]. Due to their importance for the 

types of interconnected renewable sources of energy in the 

electric power networks, distributed production will become 

more widespread in a short time. Renewable sources of energy 

including solar and wind energy are still quite unpredictable 

since they are powered by wind and rain. These supplies and 

demands, which may cause erratic variations on both the 

producing and loading sides, may make even the finest control 

of energy more challenging. MDP was used to handle the EMS 

structure, which is described as a Markov management 

procedure in this research. A new solution to the issue has been 

proposed in order to shield the administration of capability 

from excessive grid rates. The battery's energy may now be 

used more effectively owing to this adaptation. The 

development of a complete reward system that minimizes the 

examination of unrealistic acts has increased the efficacy of 

the data-gathering technique. After that, when considering that 

future data is unpredictable, the operational expense of the 

microgrids is reduced by utilizing a Q-learning approach. To 

determine the efficacy of the recommended EMS, a contrast 

amongst the trading EMS simulation and the non-trading 

instance is made utilizing a conventionally constructed loads 

curve and the photovoltaic profiles with 24-hour horizons.  

The infrastructure decides on an optimum power plan that 

lowers the costs of energy (also referred to as the costs of 

power and actually Muhammad, A. N., Bukhori, & Pandunata 

(2019, October). This is done based on 

the simulations' findings. Employing the naive Bayes-support 

vector machines (NBSVM) classifiers, we analyze sentiments 

of negative as well as positive feedback on YouTube. In each 

of the cases under consideration, IEEE battery wear was 

present in the 2019 International Seminar to the Computer 

Science, IT, and Electrical Engineering (ICOMITEE) (pp. 

199–205). However, it was shown that operating expenses for 

the trading and non-trading EMS systems were reduced by 

4.033% in summertime and 2.199% in wintertime [15–21]. 

Photovoltaic solar panels are gaining popularity at the moment 

due to their capacity to turn solar energy directly into electrical 

power. The electricity generated by PV installations is seldom 

capable to satisfy demand needs fast, though, as there isn't a 

sufficient supply to swiftly meet customer demands. Grids-

connected photovoltaic solar panels have received attention 

recently due to their usage of stored energy and flexible load 

management while solving the major quality of power 

concerns in the networks. This makes solar photovoltaic panels 
even more effective and useful. Various battery control 

methods are utilized to increase estimation demands and 

ensure the optimum inclusion of photovoltaic systems into the 

energy grids. The extensive deployment of solar photovoltaic 

panels has been impacted by the growth of electricity policy. 

The goal of this study is to investigate different modeling and 

sizing techniques for solar photovoltaic system efficiency. We 

discuss techniques to optimize photovoltaic systems' energy 

storage as well as ways to increase their earnings. It has also 

been examined how inverter/converter innovation, 

management, and voltages quality concerns relate to the 

present state of photovoltaic systems innovation in relation to 

different cellular technologies [22–26]. 

The mentioned studies are collectively highlight the 

research gap in the context of irregular wind and solar energy 

integration. While advancements have been made in integrated 

renewable battery banks, smart-grid transmission innovations, 

and alternative power sources, there remains a need to address 

challenges related to tuning control variables, frequency 

regulation, and load management in dynamic grid systems. 

The studies reveal a gap in achieving effective online 

adjustments for frequency control and load integration, 

particularly in the presence of fluctuating renewable sources. 

Furthermore, the investigations emphasize the necessity for 

tailored optimization approaches and advanced control 

algorithms to optimize energy generation and consumption 

while ensuring grid stability. The research also underscores the 

need for innovative energy management strategies that account 

for unpredictable renewable supply and demand patterns, 

while effectively integrating different energy sources like 

wind, photovoltaic, fuel cells, and batteries. In summary, the 

research gap pertains to the development of comprehensive 

and adaptable control strategies that address frequency 

regulation, load management, and energy optimization in the 
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complex setting of irregular renewable energy resources, 

ultimately contributing to the stability and reliability of 

modern power grids [27-31]. 

3. System Model 

Battery lifetime optimization suffers from an absence of 

demands-side data (critical and non-critical loads), which 

lowers the efficiency of the system. There is a considerable 

difference between the efficiency of the system (measured in 

regards to costs and  LSLP) and battery lifespan extensions 

because the majority of research focuses primarily on the 

mathematical aspect and actual time battery administration, 

including battery compensation, hasn't been emphasized. The 

formulation for cost reduction is as follows: 

              MinCt(Psa(τ), Pwt(τ), Pbt(τ)      
= Min(Csa(τ), Cwt(τ), Cbt(τ))              (1) 

    Where, the MinCt(Psa(τ), Pwt(τ), Pbt(τ) denotes the 

minimized cost function representing the total cost of the 

hybrid renewable energy system (HRES) based on the costs of 

solar, wind, and battery components. The costs of solar, wind, 

and batteries are indicated by the letters 𝐶𝑠𝑎(𝜏), 𝐶𝑤𝑡(𝜏), , and 

𝐶𝑏𝑡(𝜏), correspondingly, where 𝐶𝑡  represents the complete 

expense of the HRES. The present value of the sum of all 

expenses, encompassing replacements, investments, 

operations, and sustaining expenses, is employed to calculate 

the NPC [32]. These expenses need to be reduced to create a 

low-cost system. The NPC is established as follows: 

   NPC(Hb) = ∑
1

(1 + ik)LT

LT

1

(CHbc + Omc + Rc − Sc)    (2) 

 Where 𝐻𝑏 refers to the integration of resources for wind 

and solar power and 𝐶𝐻𝑏𝑐 for the overall capital expenditures 

related to those resources [33]. 𝑂𝑚𝑐 indicates operating and 

maintenance costs and 𝑅𝑐 indicates the replacement costs and 

𝑆𝑐 indicates the salvage costs. The 𝑖𝑘 and 𝐿𝑇 referes the 

interest rates, and lifetime of projects individually.  

The costs of power is a crucial indicator(CoEHb) which 

quantifies the cost of producing one unit of energy over the 

lifetime of the HRES. It considers the total costs associated 

with capital investments, operations, maintenance, and 
replacements, divided by the total energy output of the system 

[34]. This also known to be project's financial viability and 

may be expressed as follows: 

CoEHb =
[Cwtc + Omc + Rc + Sc] ×

ik(1+ik)LT

(1+ik)LT−1

∑ [Esa + Ewt + Ed ×
1

(1+ik)LT]
LT
1

     (3) 

 Where Cwtc represents the Capital cost associated with 

wind turbine resources. 𝐸𝑠𝑎, 𝐸𝑤𝑡 represents the power-

produced from the solar, winds power resources and 𝐸𝑑 

represents the power discharged correspondingly. To 

demonstrate that a certain project is financially viable, the CoE 

must be minimized [35]. 

 In order to provide a stable and continuous supply of 

electrical power, the LPSP—a measurement of the electrical 

powers produced by the HRES models—should be decreased. 

The LPSP metric quantifies the proportion of power deficit or 

loss of supply probability. A lower LPSP value indicates a 

more reliable HRES model that can consistently meet power 

demands , the HRES algorithm's LPSP is calculated as, 

  LPSPHb

=
∑ [Pr(τ) − [NsaPsa(τ) + NwtPwt(τ) + Pd(τ)]]

k
τ=1

∑ [Pr(τ)]
k
τ=1

       (4) 

      Where 𝑃𝑟(𝜏) indicates the references energy at time (𝜏), 
𝑁𝑠𝑎, 𝑁𝑤𝑡 represents the numbers of solar photovoltaic arrays 

and winds-turbines, 𝑃𝑠𝑎, 𝑃𝑤𝑡 represents photovoltaic arrays 

and winds-turbines and 𝑃𝑑(𝜏) indicates the energy discharged 

at time (𝜏). 

 The reliability of the HRES paradigm is shown by the 

fluctuating rates, a minimum value of Fr implies greater 

stability in meeting power demands and minimizing abrupt 

changes in power output. This stability is crucial for ensuring 

a reliable and continuous supply of electricity, which is 

especially important for systems serving critical loads and 

isolated areas. which may be expressed as follows: 

Fr(Hb)

=
1

Pr(τ)
√

1

k
∑[NsaPsa(τ) + NwtPwt(τ) − Pr(τ)]2
k

τ=1

         (5) 

Greater reliability is demonstrated in the HRES paradigm 

when the fluctuating rates are at their lowest point. The 

anticipated consumption load and weather data are 

demonstrated in the subsequent for the best size of RESs 

including winds-turbines, photovoltaic arrays, and banks of 

batteries [36]. This phase uses two steps of a unique deep and 

optimized-grap technique to identify variables of state. The 

suggested method uses previous data to anticipate the demand 

and weather in the initial phase. The amount of electrical 

power utilized by the device ρi over a period, which is a 

representation of the amount of power needed for devices like 

electric current, lightning, and other appliances, is utilized to 

evaluate the demands for load. The formulation is as follows: 

εl = ∑ρi × ti

n

i=1

                            (6) 

This above equation calculates the total electrical energy 

demand (εl) by summing up the products of power demands 

(ρi) and corresponding time durations (ti) for each device or 

load. For early forecasting, we propose individualized LSTM 

networks, a similar deep learning technique. In the initial 

stage, historic weather conditions and data loads are utilized to 

compile the predicting data. Estimating the prediction of 

weather is preferred since forecasts for atmospheric conditions 

are susceptible to alter as time passes. It is anticipated that this 

will make precise demand on load and forecasting of the 

weather feasible. For the purpose of gathering data and 

predicting the demand for loads, we took into account the 

following factors. Actual temperatures, relative humidity in 

proportion, the speeds of the winds in kilometers per hour, 

climate codes, and classification field that denotes the four 

distinct weather seasons—0 for springtime, 1 for the 

summertime, 2 for fall, and 3 for winter—are among these. It 
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also tracks home lifestyle, households economy, weather 

conditions, and historic power and energy usage of the loads 

[37].  

One neural network framework called LSTM was created 

expressly for understanding the relationships between both 

long- and data that get around the problems of expanding and 

disappearing. The many-in-many-out approach used to run our 

suggested framework predicts various projections of the 

present demand using a variety of sources. LSTM offers a 

robust dependability operation that collects both non-linear 

and linear time-varying data and improves forecasting demand 

precision when contrasted with different neural-networks. the 

4 gates, including a source gate, a forgot gate, an inside gate, 

and a result gate, are part of the LSTM specifically. With the 

cells and gates, the data flow is managed. Fig. 2 demonstrates 

the suggested method of LSTM. The suggested LSTM 

algorithm's theoretical formula is described below: 

(i)  x(ti)  → Input value 

(ii)  h(ti−1) and h(ti) → Result values across the time ti−1 and 

ti 

(iii)  c(ti−1) and c(ti) → Cell-states across the time ti−1 and ti 

(iv)  β = {βa, βf, βc, βo} represent the internal state, forget gate, 

output gate, and input gate biases.  

(v)  ω1⃗⃗⃗⃗  ⃗ = {ωa, ωf, ωc, ωo} denotes the matrix of weights for 

output gate, input gate, forget gate, and internal state.  

(vi)  ω2⃗⃗⃗⃗  ⃗ = {ωha, ωhf, ωhc, ωho} denotes the weighted values 

in the frequent results.  

(vii) a⃗ =  {a(ti), f(ti), c(ti), o(ti)} demonstrates 

correspondingly, the resultant outcomes for the input gates, 

forget gates, internal gates, and output gates. 

 An operational LSTM framework is created by taking into 

account the aforementioned factors is shown in fig.1. The 

predicted data is then given into the optimization phase, which 

is the next step. At this point, we recommend the shuffled 

shepherd optimization(Sm,n
0 ) technique, it has effectiveness in 

handling complex optimization problems and can able to 

quickly converges and well. By incorporating the S2OA into 

the optimization process, the proposed approach leverages its 

ability to effectively allocate resources, optimize power 

generation, and improve the overall efficiency of the HRES. 

Initially, this formula is applied for initializing both the inputs 

and S2OA variables.  

Sm,n
0 = Smin + r ∗ (Smax − Smin)            (7) 

  n = 1,2, … i & m = 1,2, … . j                (8) 

Here, Smin and Smax is the minimum and maximum 

allowable allowable value for the optimization variable. r 

denotes the randomly selected number between the 1 and 0 

correspondingly, 𝑖 and 𝑗 denotes in the every group. Each 

group's member are presented in the primary column, which is 

described below: 

MC =

[
 
 
 
 
 
S1,1 S1,2 S1,j ⋯ S1,n

S2,1 S2,2 S2.j ⋯ S2,n

⋮ ⋮ ⋮ ⋯ ⋮
Si,1 Si,2 Sj,2 ⋯ Si,n

Sj,1 Sj,2 Sm,j ⋯ Si,j ]
 
 
 
 
 

                (9) 

 The following step is to determine the group member's 

activity(Stepn,m), which is then classified as either good 

(Stepn,m
Best)or bad(Stepn,m

Worst ). 

Stepn,m = Stepn,m
worst + Stepn,m

Best            (10) 

   Here, n indicates 1,2, … 𝑖 & 𝑚 = 1,2, … . 𝑗. The following 

description applies to the end procedure., 

                                  new Sn,m = Sn,m + Stepn,m               (11) 

X +

 

X X 

σ σ σ tanh

tanh

X

(t  -1)

( t  )i

ih
(t  )ih

(t  -1)ic (t )ic

Historical 

Data

S2OA

Load

Weather

Forecasted 

data

Optimal Sizing

Solar

 

Fig.1 Process of Deep Optimal-Sizing 

 The S2OA chooses the best size while taking dependability 

and expense into account. Given the limitations of the 

anticipated loads and weather conditions, all these variables 

determine the HRES's optimum scale. Here, we accomplish 

the following,  

• Optimal size reduces the costs  

• Enhanced dependability such as continuous electricity 

supply 

• Predicting further reduces the uncertainty 

 The following formula can be used to express the overall 

power produced by the suggested method:   

ρtotal(t) =  ∑ ρpv(t) + ∑ ρwT(t) + ∑ ρbb(t)

Qo

pv=1

Qm

pv=1

Qn

pv=1

 (12) 

Here 𝑄𝑛, 𝑄𝑚 and 𝑄𝑜 are the total number of winds-

turbines, solar cells, and banks of batteries, correspondingly. 

Equation (12) represents the HRES's total power generation, 

encompassing contributions from solar, wind, and battery 

components. It underscores the integral role of accurate power 

estimation and resource optimization in achieving the 

overarching objectives of stable, cost-effective, and reliable 

energy supply in the proposed hybrid renewable energy system 

[38]. 

In conclusion, incorporating optimization based on 

predictions enhances the system's ability to make proactive 

and well-informed decisions. By leveraging the LSTM model's 

predictive capabilities, the framework can identify system 

configurations that maximize efficiency, reduce costs, and 

extend the overall lifetime of the hybrid renewable energy 
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system. This synergy between predictive modeling and 

optimization is a key strength of the proposed approach, 

ensuring that real-time and future conditions are considered 

when making critical energy management decisions. 

4. Results & Discussion  

The proposed battery lifetime optimization framework 

relies on historical data collected from the hybrid renewable 

energy system. Load demand data, weather conditions, energy 

generation from solar and wind sources, and battery behavior 

patterns are crucial inputs. These data are collected over a 

specific time period and undergo preprocessing steps to ensure 

accuracy and consistency. Validation of the data involves 

cross-referencing with reliable sources, and data quality 

checks are performed to identify and rectify any outliers or 

inconsistencies. Several input parameters are considered in the 

optimization process. These parameters encompass weather-

related variables such as temperature, wind speed, and 

humidity, which impact energy generation. Load demand data, 

classified by type (critical and non-critical), is another key 

input. Battery characteristics, including capacity, efficiency, 

and degradation rates, are also incorporated. Economic factors 

like capital costs, operating and maintenance expenses, and 

interest rates play a role in the cost calculations. To develop 

and validate the battery lifetime optimization model, the 

dataset is divided into three subsets: training, testing, and 
validation data. The training data constitute a significant 

portion of the historical records and are used to train the LSTM 

network. Testing data are separate from the training set and are 

employed to fine-tune the model and assess its performance. 

Validation data, representing an independent set of historical 

records, are used to evaluate the model's predictive capabilities 

and ensure its generalizability to new data [39] [40]. 

Utilizing MATLAB R2020b's simulation method, the 

proposed framework is evaluated. The setup options required 

for the simulated technique are listed in Table 3 below. The 

energy production mechanism in the simulation is composed 

of grids turbines and solar panels. Table 4 contains the list of 

variables utilized in the simulated investigation. The Simulink 

architecture for the suggested solution has also been created. 

Initially, the battery power of current methods is 

contrasted with that of our recommended approach. This 

comparison also takes into consideration the total number of 

repetitions and accounts for both solar and grid-connected 

power. In comparison to past approaches, the suggested 

solution improved the bank of batteries power, increasing the 

lifespan of the battery. It accomplished this by incorporating 

battery control methods such as modes choice, compensation, 

and the correct size. Fig.2 compares the bank of batteries 

power of our proposed technique, which takes into 

consideration both solar and grid-connected power and 

alternative current techniques. 

 

Fig.2. Battery bank energy (both solar and grid battery) 

 The suggested approach has increased the bank of battery 

power to around 2.3kWh once solar and grid-connected power 

were combined, and this is preferable to merely taking into 

consideration solar power or grids power. The present 

methodologies have an optimal energy consumption of about 

1.6kWh, however, the suggested strategy possesses a larger 

power capability. The finding that our recommended design 

efficiently improves the power output of the battery banks. 

The recommended strategy's net present cost, that 

incorporates hybrid sources of energy, is depicted in Fig.3. Our 

suggested algorithm's net present expense, which accounts for 

the grids and solar power resources equally, is compared to 

that of earlier methods with regard to the total number of 

repetitions. 

 

Fig.3.Net present costs (both solar and grids battery) 

 In comparison with utilizing grid (58.2%) or the solar 

energy (56%), the hybrid system's net present cost for the 

scheduled tasks is 39.2%. The hybrid power system's cost 

comparison with only one source of energy demonstrates that 

it is more expensive and less efficient. Additionally, 86.4% of 

the net current costs demonstrate how cost-effective the prior 

procedures performed. Overall, the hybrid approach 

demonstrates economic viability and long-term cost savings. 
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Examining the LPSP of the recommended paradigm while 

accounting for solar and grid sources of energy. Fig.4 contrasts 

the suggested approach to the existing ones while accounting 

for hybrid renewable energies and taking into consideration 

the total amount of repetitions. The LPSP of our prototype is 

quite small due to the effective battery management of energy. 

As a consequence, the energy supply is sufficient and there 

aren't any shortages of electricity, leading to improved stability 

and consistency in delivering electrical energy to consumers. 

This increased reliability is particularly advantageous for 

remote or off-grid areas where consistent power availability is 

crucial for various applications, including critical services and 

everyday activities.  Existing approaches for managing 

batteries poorly cause an increase in LPSP. 

 

Fig.4. LPSP (both solar and grid battery) 

This highlights how well the recommended approach 

combines and handles data from various sources of energy. 

The LPSP is one of the current approaches, and its uptake of 

33.6%, which is over three-times the rate of alternative 

methods, leads to an assumption that the framework is 

effective. The extent assessment was carried out to fluctuations 

for the framework, and the proposed approach incorporates the 

energy resources. 

 

Fig.5. Forecasting error (both solar and grid battery) 

Fig. 5 compares the recommended system's and current 
approaches' predictions of correctness for the total amount of 

repetitions. The minimal prediction inaccuracy of our 

suggested approach is due to a combined estimation of demand 

for loads and weather that considers hybrids sources of energy. 

Users that keep large volumes of historical data permit precise 

weather conditions and load predictions with little inaccuracy. 

The present approaches cannot manage the large training 

dataset, leading to predicting errors. By providing accurate 

weather and load demand estimates, the model minimizes 

inefficiencies and ensures optimal resource allocation, 

resulting in proposed approach improvements in energy 

management and system reliability. 

The cost of energy for this suggested strategy, which uses 

grid and solar energy sources. Fig.6 contrasts the CoE of the 

approaches now in use with those of our proposed framework, 

which incorporates hybrid energies. Since it utilizes the 

greatest use of the available resources to provide an 

appropriate electrical supply with minimal shortages, the 

suggested approach results in decreased CoE. As a result, 

battery capacity gradually increases and the CoE decreases. 

The ineffective power administration of the current techniques 

led to wasted energy. This reduction in CoE translates to 

enhanced economic efficiency, benefiting end-users by 

potentially lowering energy costs and increasing the overall 

affordability of the hybrid energy system. The focus on 

minimizing CoE aligns with the broader goal of establishing 
sustainable and cost-effective energy solutions for various 

applications and regions. 

 

Fig.6. cost of energy (both solar and grid battery) 

Consequently, the variation rate of our suggested models, 

which account for both solar power and power grid sources are 

investigated. 
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Fig.7. fluctuation rate (both solar and grid battery) 

In Fig.7, the solution to our recommended algorithm's 

cost-effectiveness is load prediction that lead to changes in the 

energy supply. The lack of consideration for uncertainty in the 

present methodologies leads to a higher fluctuating rates. In 

the suggested model, hybrid sources of power are considered; 

their rate of fluctuation is roughly 2.1%, which is less than that 

of renewable irradiation (3.5%) or electrical grids (4%). This 

explains about how the  suggested system efficiently handles 

the unpredictability of the loads. As demonstrated by the 

existing approaches' fluctuation rate of around 5.4%, our 

suggested method offers a dependable supply of power. 

5. Conclusion & Future Work  

This work offers a useful approach for controlling and 

growing hybridization sources of renewable energy sources 

through data-driven approaches. The LSTM system is 

employed for predicting load uncertainties after using 

historical information to forecast weather conditions and load 

needs. It is done to help with appropriate resources sizing. The 

resources are also sized using the shuffled shepherd 

optimization technique to make the greatest use of the 

anticipated data.This approach successfully overcomes the 

limitations of existing methods, optimizing resource allocation 

and achieving lower Loss of Power Supply Probability (LPSP) 

and forecasting errors. The proposed model also significantly 
reduces the Cost of Energy (CoE), showcasing its economic 

efficiency and potential benefits for end-users. The conducted 

simulations, carried out using MATLAB R2020a, have 

rigorously validated our approach. By meticulously comparing 

our model against alternative strategies across diverse metrics 

such as fluctuating rates, battery power, current value 

expenses, and costs of energy, we have demonstrated the 

robustness and effectiveness of our approach. Looking ahead, 

we acknowledge the potential for further refinement and 

enhancement. Future iterations of this research will leverage 

cutting-edge techniques to elevate the precision and 

performance of our proposed model, thereby paving the way 

for its broader implementation and making a lasting impact on 

remote area energy accessibility. 
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