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Abstract- The integration of hybrid renewable power systems (HRPSs) offers a viable solution to ensure access to green, most 

reliable, and cost-effective energy sources, aligning with the objectives of sustainable development. An empirical case study is 

presented, involving a grid-tied HRPS for various climatic areas in Egypt, to assess the effectiveness of the hybrid system under 

various weather conditions. This work introduces two optimizers for determining the appropriate design of a grid-tied HRPS that 

incorporates photovoltaic (PV) modules, wind turbines (WTs), and battery banks (BBs). The major goal of this work is to 

implement smart strategies for managing the energy interchange between the HRPS and utility grid, to achieve design objectives. 

This research article provides a fair comparison of two optimizers, namely atom search optimization (ASO) and zebra 

optimization algorithm (ZOA), offering an in-depth evaluation of their performance and effectiveness. A mathematical model 

of the entire system is presented in this study, and it is simulated by MATLAB software. The simulation outcomes confirm the 

superior performance of the ZOA algorithm over the other optimizer, demonstrating its potential to deliver promising solutions. 

According to the results, installing the proposed hybrid system in the New Alamein region instead of the other site would save 

costs and reduce carbon emissions. 

Keywords Grid-tied hybrid renewable power system, optimal design, multi objectives optimization, atom search optimization 

(ASO), zebra optimization algorithm (ZOA). 

 

1. Introduction 

Over the past few decades, the rise in global population 

and the expansion of industrial sectors have led to a notable 

upswing in electricity requirements. Presently, a substantial 

portion of electricity production heavily depends on finite 

fossil fuels like oil, natural gas, and coal. In actuality, these 

resources cater to more than 70% of the global energy demand 

[1], [2]. The substantial surge in energy requirements along 

with the negative ecological consequences linked to fossil 

fuels has prompted several countries to seek ways of fulfilling 

their energy needs through the utilization of green and more 

sustainable power sources. In the lead-up to the 26th 

Conference of the Parties (COP26), numerous nations have 

unveiled fresh commitments detailing their contributions to 

the global effort of attaining climate goals, particularly aiming 

for net zero emissions targets. In line with this trajectory, the 

majority of newly added electricity generation capacity by 

2030 will stem from low-emission sources, with wind turbines 

(WTs) and photovoltaic (PV) alone accounting for nearly 500 

GW on an annual basis. Consequently, the utilization of coal 

in electricity generation is anticipated to decrease by 20% 

from its recent peak by 2030. If all the announced 

commitments are effectively put into action, global CO2 

emissions stemming from electricity production are projected 

to witness a 40% reduction by 2050 [3].  

Combining wind and solar power generation can help 

overcome the limitations of each renewable energy source 

(RES) individually. WTs output fluctuates based on variable 

wind speeds. PV modules only produce power during daylight 

hours. However, integrating wind and solar together can 

minimize fluctuations and enable more consistent power 

production day and night. The complementary nature of wind 

and solar can lead to a more reliable HRPS [4]. Egypt receives 
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abundant sun (3100 hours of sunshine annually, translating to 

9 to 11 hours daily across the country) and moderate winds 

(ranging from 5 to 10 m/s in some regions) ideal for renewable 

energy generation, yet currently relies mainly on fossil fuels 

for electricity. This heavy fossil fuel use results in over 223 

million tons of CO2 emissions annually, impacting the 

environment negatively. Working to change this, Egypt now 

has a national plan to significantly increase renewable energy 

production over the next decade, with wind and solar together 

potentially supplying around 40% of the country's electricity 

by 2035 (14% from WTs & 25% from PV) [5]. 

Hybrid renewable power systems (HRPSs), comprising 

hybrid electricity sources, can operate in independent or grid-

tied modes. The grid-dependent mode facilitates trading with 

the utility grid, making the system a revenue source and 

incentivizing investments in the power sector. By allowing the 

HRPS to sell excess electricity to the grid, it becomes 

economically viable and attractive for stakeholders to 

participate and invest in the system. This trading option 

enhances the financial sustainability and attractiveness of 

HRPSs as a renewable energy solution [6]. Connection with 

the utility grid offers two options: purchasing power only 

during energy deficit periods or enabling power exchange with 

the utility grid (purchasing electricity & selling excess power). 

Net metering and feed-in tariffs (FIT) are used to account for 

electricity exchange. In net metering, bidirectional meters are 

employed to measure both energy consumption from the grid 

and surplus generation that is fed back into the grid. FIT 

calculates compensation for injected power into the utility grid 

[7]. 

Obtaining the perfect design of HRPS presents a 

significant challenge, with the major goal being to decrease 

the expenses of electricity production while ensuring 

uninterrupted power provision (robust reliability) and at 

lowest pollution emissions. Optimal sizing of HRPSs involves 

the utilization of different assessment criteria, encompassing 

economic indexes such as cost of energy (COE), reliability 

metrics such as loss of power supply probability (LPSP), and 

environmental considerations such as carbon emissions (CE) 

[8]. Various researchers have proposed a range of 

optimization algorithms aimed at tackling sizing challenges. 

Several examples of these approaches include: genetic 

algorithm [9], cuckoo search [10], simulated annealing [11], 

whale optimization algorithm (WOA) [12], grey wolf 

optimizer (GWO) [13], and improved multi-objective GWO 

[14]. 

In recent times, there has been a proliferation of studies 

that aim to elucidate and assess various aspects of grid-tied 

HRPSs. Minimizing the net present cost was the main 

objective for the perfect design of grid-tied HRPS comprising 

PV, a biomass generator (BG), and battery banks (BBs) [15]. 

In other research works, two objectives, namely COE and 

LPSP were considered to determine the optimal configuration 

of HRPS consisting of  PV modules/WTs as well as a fuel cell 

and a utility grid as backup systems [16], [17]. Grid-dependent 

PV modules/WTs/BG hybrid system was optimized to 

decrease COE [18]. Four optimization algorithms were 

employed to determine the optimal sizing of HRPS connected 

to the grid incorporating PV modules, WTs, and pumped 

hydro storage, with multiple objectives: optimizing the 

following, COE, fluctuations in the power supplied to the grid, 

LPSP, and complementary characteristics of renewable 

sources [19]. 

In Ref. [20], the optimal design of three HRPS 

configurations was evaluated using HOMER Pro (version 

3.13.6): a grid-tied HRPS, a grid-tied HRPS with a FIT, and a 

standalone HRPS, all incorporating PV/WT/BB/diesel 

components. The outcomes indicated that the grid-tied HRPS 

with a FIT policy would result in the lowest NPC compared to 

the other configurations. HOMER software was utilized in 

Ref. [21] to optimize the COE in an HRPS comprising PV, 

BB, and diesel components. The outcomes showed that the 

COE was reduced to a value of 0.2386 $/kWh. In Ref. [22], 

linear programming (linprog) in MATLAB was applied to 

optimize an HRPS comprising PV, WT, and BB components. 

The study revealed that the implementation of demand 

response resulted in a 65% reduction in BB size and a 28% 

decrease in the capital cost of the system. 

The significant contributions of this study can be 

summarized as follows: 

 Presenting a case study encompassing a grid-tied HRPS 

for two distinct climatic regions in Egypt, aiming to 

assess and quantify the system's operational efficiency 

across diverse weather conditions. 

 Applying smart strategies to efficiently manage power 

interchange between HRPS and the electric grid, with the 

overarching goal of minimizing critical factors such as 

COE, LPSP, and CE as possible. 

 Introducing a pair of optimizers to address the sizing 

dilemma and conducting an equitable comparative study 

to determine the superior option. 

The paper's organization is outlined as follows: In Section 

2, the mathematical modelling of the proposed grid-tied HRPS 

is elaborated, encompassing its components and strategy for 

power management. Section 3 delves into expense estimation, 

reliability, and CO2 emissions assessment, while also 

introducing the optimization techniques utilized. The 

subsequent Section 4 is dedicated to presenting the results and 

discussions, highlighting outcomes for each location. The 

paper concludes in Section 5. 

2. Modeling of Grid-Tied HRPS 

In this section, the mathematical modeling of various 

components within the suggested grid-tied HRPS is detailed. 

This modeling is essential for the analysis of the system's 

overall performance. This grid-tied HRPS configuration 

incorporates several components, including PV modules, 

WTs, BBs, the electric grid, a bidirectional power converter, 

and a designated load, as illustrated in Fig. 1. The primary 

sources of energy in the system (solar & wind) are confronted 

with a significant challenge due to their intermittent nature. 

Consequently, BBs are utilized as primary backup systems to 

mitigate and address issues related to reliability. The electric 

grid acts as a secondary backup in situations where BBs are 

unable to meet the energy demand, and it also serves as a 

consumer of surplus energy once BBs are fully charged. 
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Fig. 1. Typical grid-dependent HRPS schematic. 

2.1. PV Module 

PV modules are a sustainable energy solution capable of 

capturing sunlight and transforming it directly into electric 

power. These PV modules are characterized by their simple 

installation process and minimal upkeep expenses. Their 

output power (𝑃𝑃𝑉𝑀𝑠) is primarily influenced by 

environmental factors such as solar radiation (𝑅) and ambient 

temperatures (𝑇𝑎) as follows [23], [24]: 

𝑃𝑃𝑉𝑀𝑠(𝑡) = 𝑁𝑃𝑉𝑀𝑠 ∗ 𝜂𝑃𝑉𝑀𝑠 ∗ 𝑃𝑅 _ 𝑃𝑉𝑀 ∗
𝑅(𝑡)

𝑅𝑁
[1 − 𝜇((𝑇𝑎(𝑡) +

0.034𝑅(𝑡)) − 𝑇𝑁)]   (1) 

where, 𝑁𝑃𝑉𝑀𝑠 , 𝜂𝑃𝑉𝑀𝑠, 𝑃𝑅 _ 𝑃𝑉𝑀, 𝑅𝑁, 𝑇𝑁, and 𝜇 are the total 

number, efficiencies, capacity, radiation under standard 

conditions, cell temperature at standard conditions, and 

temperature coefficient of PV modules, respectively. 

2.2. Wind Turbine 

The power generated by the WT is influenced by three 

primary factors: the wind speed at the chosen location, the 

height of the WT tower's hub, and the power output curve of 

the selected WT model. Converting the measured wind speed 

at an anemometer height to the relevant hub height is essential 

due to the variation of wind speed with altitude. The following 

formula can be employed to estimate wind speed at any 

desired height [25]: 

𝑉𝛪𝛪(𝑡)

𝑉𝛪(𝑡)
= (

𝐻𝛪𝛪

𝐻𝛪
)

𝛽𝐶
   (2) 

where, 𝑉𝛪𝛪(𝑡), and 𝑉𝛪(𝑡) denote wind speed at a time 𝑡 for 

required high 𝐻𝛪𝛪, and reference high 𝐻𝛪, respectively, 

𝛽𝐶indicates friction coefficient. The actual power generated 

by WTs (denoted as 𝑃𝑊𝑇𝑠(𝑡)) can be mathematically 

described as follows [26]: 

𝑃𝑊𝑇𝑠(𝑡) =

{

𝑁𝑊𝑇𝑠 ∗ 𝜂𝑊𝑇𝑠 ∗ 𝑃𝑅𝑊𝑇
∗

𝑉2(𝑡)−𝑉𝐿
2

𝑉𝑅
2−𝑉𝐿

2 ,         𝑉𝐿 < 𝑉(𝑡) < 𝑉𝑅

𝑛𝑊𝑇𝑠 ∗ 𝜂𝑊𝑇𝑠 ∗ 𝑃𝑅_𝑊𝑇 ,                             𝑉𝑅 < 𝑉(𝑡) < 𝑉𝐻

0,                                                  𝑉(𝑡) < 𝑉𝐿 𝑜𝑟 𝑉(𝑡) > 𝑉𝐻 

 

                (3) 

where, 𝑁𝑊𝑇𝑠, 𝜂𝑊𝑇𝑠, 𝑃𝑅 _ 𝑊𝑇, 𝑉𝑅, 𝑉𝐿 and 𝑉𝐻 denote the total 

number, efficiencies, rated power, rated speed, lowest and 

highest wind speed limitations of WT, respectively. 

2.3. Utility Grid 

RESs, being inherently intermittent, require a secondary 

backup for sustained energy supply. In cases where the battery 

banks fail to meet the energy demand, the electrical grid steps 

in, providing the necessary power. The calculation for 

purchased power from the grid is governed by Eq. (4). 

Conversely, during surplus energy periods and following 

battery banks' full charge, excess energy is channeled back to 

the grid, with the computation outlined in Eq. (5) [27]. 

𝑃𝐺𝑃(𝑡) = 𝑚𝑖𝑛(𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡(𝑡);  𝑃𝐺𝑃,𝑀𝑎𝑥)   (4) 

𝑃𝐺𝑆(𝑡) = 𝑚𝑖𝑛(𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑡);  𝑃𝐺𝑆,𝑀𝑎𝑥)   (5) 

where, 𝑃𝐺𝑃(𝑡) and 𝑃𝐺𝑃,𝑀𝑎𝑥 indicate purchased power at a 

time 𝑡 and maximum allowable purchased power from the 

grid, respectively, 𝑃𝐺𝑆(𝑡) and 𝑃𝐺𝑆,𝑀𝑎𝑥 signify sold power at a 

time 𝑡 and maximum allowable sold power to the grid, 

respectively. While, 𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡(𝑡) represents the energy deficit 

that occurs after the BBs discharge their stored energy 

completely, and 𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑡) signifies the surplus energy that 

remains after the BBs have completed their charging process. 

2.4. Battery Bank 

The core function of battery bank is to store surplus 

energy generated by renewable sources, ensuring its 

availability for later use. During periods of higher power 

demand than renewable generation, the BBs can be discharged 

to meet the energy requirement, thereby acting as a primary 

backup for grid-tied HRPS, as articulated in Eq. (6). 

Conversely, in scenarios where renewable energy production 

exceeds energy for load demand, BBs are capable of 

recharging, as detailed in Eq. (7) [23], [28]. 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 − 𝛽𝐵𝐵) − [
𝑃𝐿(𝑡)−𝑃𝑊𝑇𝑠(𝑡)

𝜂𝐶
−

𝑃𝑃𝑉𝑀𝑠(𝑡)] ⋅ 𝜂𝐷𝐵   (6) 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 − 𝛽𝐵𝐵) + [
𝑃𝑊𝑇𝑠(𝑡)−𝑃𝐿(𝑡)

𝜂𝐶
+

𝑃𝑃𝑉𝑀𝑠(𝑡)] ⋅ 𝜂𝐶𝐵   (7) 

where, 𝑆𝑂𝐶(𝑡), 𝑆𝑂𝐶(𝑡 − 1), 𝛽𝐵𝐵, and 𝑃𝐿(𝑡) denote BB's 

state of charge at a time 𝑡, 𝑡 − 1, self-discharge rate, and load 

demand, respectively, 𝜂𝐶, 𝜂𝐶𝐵, and 𝜂𝐷𝐵 are converter, battery 

charging, and discharging efficiencies, respectively. 

2.5. Bi-directional Converter 

The illustrated hybrid system in Fig. 1 integrates both 

alternating current (AC) and direct current (DC) components, 

necessitating power electronics converters to facilitate 

bidirectional power conversion. These converters play a 
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crucial role in transforming AC power into DC and vice versa. 

The selection of the capacity for the bidirectional converter is 

driven by the maximum load demand (peak) as follows [29]: 

𝑃𝑅 _ 𝐶 =
𝑃𝐿,𝑃

𝜂𝐶
   (8) 

where, 𝑃𝑅 _ 𝐶, 𝜂𝐶, and 𝑃𝐿 _ 𝑃 denote rated power, efficiency 

of converter, and peak load demand, respectively. 

2.6. Strategy for Power Management 

The effective regulation of electricity generation to fulfill 

load demands is achieved through the implementation of a 

power management technique. This approach is depicted in 

the flowchart provided in Fig. 2. As per the flowchart 

sequence, surplus energy generated by sustainable resources 

is harnessed to recharge BBs. This occurs when renewable 

energy production exceeds load demands, resulting in a zero 

LPSP value. Any remaining surplus energy following full 

recharging is then fed into the grid. However, if sold power to 

the grid exceed the predefined limit (𝑃𝐺𝑆,𝑀𝑎𝑥), the surplus 

energy is redirected to a dumping load. In contrast, if the 

energy output from renewable sources falls short of the load 

demand, BBs enter a discharge mode to provide the necessary 

electricity. If the combined energy output from sustainable 

sources and BBs is still insufficient to meet the load demand, 

the electric grid intervenes to cover the energy gap. In 

scenarios where power is being procured from the grid, LPSP 

is set to zero if the purchased power from the grid is below a 

certain predefined limit (𝑃𝐺𝑃,𝑀𝑎𝑥). However, if the purchased 

power exceeds this limit, the LPSP can be calculated using the 

formula that will be discussed in the following section. 

3. Optimization Problem 

3.1. Cost of Energy 

COE is a prominent economic indicator frequently 

employed to evaluate the feasibility of hybrid systems. It can 

be computed based on the annual cost of the system (𝐶𝑇𝑜𝑡
𝐴𝑛𝑛) 

and the total load demand throughout the year. The COE 

calculation is expressed through Eqs. (9) and (10) [30]. The 

transition from the system's net present cost (𝑁𝑃𝐶) to the 

annual total cost of the system is achieved through the 

application of the capital recovery factor (𝐶𝑅𝐹𝑖,𝑚𝑃), as 

determined by Eqs. (11), and (12) [31], [32]. 

𝐶𝑂𝐸 =
𝐶𝑇𝑜𝑡

𝐴𝑛𝑛

∑ 𝑃𝐿
8760
𝐻=1

   (9) 

𝐶𝑇𝑜𝑡
𝐴𝑛𝑛 = 𝐶𝐶

𝐴𝑛𝑛 + 𝐶𝑂&𝑀
𝐴𝑛𝑛 + 𝐶𝑅

𝐴𝑛𝑛 + 𝐶𝐺
𝐴𝑛𝑛   (10) 

𝑁𝑃𝐶 =
𝐶𝑇𝑜𝑡

𝐴𝑛𝑛

𝐶𝑅𝐹𝑖,𝑚𝑃
   (11) 

𝐶𝑅𝐹𝑖,𝑚𝑃 =
𝑖(1+𝑖)𝑚𝑃

(1+𝑖)𝑚𝑃−1
   (12) 

In the above equations, 𝐶𝐶
𝐴𝑛𝑛, 𝐶𝑂&𝑀

𝐴𝑛𝑛 , 𝐶𝑅
𝐴𝑛𝑛, and 𝐶𝐺

𝐴𝑛𝑛 

represent the yearly expenses associated with capital, 

maintenance, replacement, electricity exchange with the grid, 

respectively, 𝑚𝑃 and 𝑖 denote the project's lifespan and the 

interest rate, respectively.

 

 

Fig. 2. Flowchart of strategies for power management. 
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3.1.1. The annual capital cost 

The annual capital expenditures for all the equipment 

used in grid-tied HRPS can be calculated using the following 

formula [30], [33]: 

ConvBB

WTPVM

mi

ConvCCR

mi

BBCBattery

mi

WTCWTs

mi

PVMCPVMs

Ann

C

CRFCPCRFCN

CRFCNCRFCNC

,

,_

,

,

,

,

,

, 2.14.1




    

                                                                                           (13) 

where, 𝐶𝐶,𝑃𝑉𝑀, 𝐶𝐶,𝑊𝑇 , 𝐶𝐶,𝐵𝐵, and 𝐶𝐶,𝐶𝑜𝑛𝑣 represent the 

initial expenses of PV module, WT, BB, and converter, 

respectively. Additionally, 𝑚𝑃𝑉𝑀, 𝑚𝑊𝑇, 𝑚𝐵𝐵, and 𝑚𝐶𝑜𝑛𝑣 

indicate the lifespan of PV module, WT, BB, and converter, 

respectively. Regarding the PV part, the civil work and 

installation expenses have been accounted for as 40% of their 

initial cost. Similarly, for the WTs part, these expenses have 

been estimated at 20% of their initial cost [34]. 

3.1.2. Operating & maintenance cost 

For calculating the yearly operational and maintenance 

expenditures of the hybrid system equipment, the following 

equation is applied: 

BBMOBatteryWTMOWTsPVMMOPVMs

Ann

MO CNCNCNC ,&,&,&&    (14) 

where, 𝐶𝑂&𝑀,𝑃𝑉𝑀, 𝐶𝑂&𝑀,𝑊𝑇, and 𝐶𝑂&𝑀,𝐵𝐵  denote yearly 

operational & maintenance expenses of PV module, WT, and 

BB, respectively. Maintenance expenses for the converter are 

not considered in this work. 

3.1.3. The annual replacement cost 

Throughout the project duration, some equipment within 

the hybrid system may need to be replaced multiple times. 

Except for the PV modules, which align with the project's 

lifespan, all other system components in this work require 

periodic replacement. The yearly replacement expenses for 

specific system components, as well as the aggregate 

replacement costs, can be calculated using the following 

formulas [35], [36]: 

 
WTmi

WTCWTs

Ann

WTsR CRF
i

CNC
,

20,,
1

1












    (15) 

 
 


20,10

,

,,
1

1

BB

BB

BB

m
m

mi

BBCBattery

Ann

BBsR
i

CRFCNC   (16) 

 
 


20,10

,

,_,
1

1

Conv

Conv

Conv

m
m

mi

ConvCCR

Ann

ConvR
i

CRFCPC   (17) 

Ann

ConvR

Ann

BBsR

Ann

WTsR

Ann

R CCCC ,,,     (18) 

In the above equations, 𝐶𝑅,𝑊𝑇𝑠
𝐴𝑛𝑛 , 𝐶𝑅,𝐵𝐵𝑠

𝐴𝑛𝑛 , and 𝐶𝑅,𝐶𝑜𝑛𝑣
𝐴𝑛𝑛  signify 

WTs, BBs, and converter yearly replacement costs, 

respectively. This research assumes a lifespan of 20 years for 

WT, 10 years for BB, and 10 years for the converter. 

3.1.4. The annual cost of power exchange with the grid 

The following equation is employed to assess the net cost 

associated with procuring electricity from the utility grid and 

selling surplus electricity back to the network [37]. 





8760

1

8760

1

)()(
t

GSS

t

GPP

Ann

G tPCtPCC    (19) 

where, 𝐶𝑃 and 𝐶𝑆 stand for the pricing associated with 

procuring electricity from the external grid and supplying 

electricity to the grid, respectively. According to the electricity 

tariff in Egypt, these prices are set at 0.08 $/kWh and 0.2 

$/kWh, respectively. 

3.2. Loss of Power Supply Probability 

LPSP, a crucial design factor, quantifies the probability 

of the hybrid system's failure to satisfy load demands 

adequately. LPSP values are confined to a range of 0 to 1. The 

power deficit (𝑃𝐷(𝑡)) needs to be maintained at zero to 

guarantee a consistent supply of the total load. The LPSP 

value is determined using the following formula [38]: 

 
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3.3. Pollution (CO2) Emissions 

This study is centred on addressing multiple objectives, 

one of which involves evaluating the environmental 

implications of a grid-tied HRPS. This assessment 

encompasses the crucial criterion of carbon emissions as an 

integral component of the sizing process. The emission of CO2 

from an electric grid (𝑃𝐸𝐺𝑟𝑖𝑑) is linked to the quantity of 

purchased power from the grid, a relationship that can be 

expressed as follows [39]: 





8760

1

_)(
t

GridEGPGrid FtPPE    (21) 

where, 𝐹𝐸 _ 𝐺𝑟𝑖𝑑 represents the emission factor of the 

utility grid and is assigned a value of 0.632 kg/kWh [40]. 

3.4. Objective Function 

The primary aim of sizing a grid-tied HRPS, as elucidated 

in this work, is to reduce the following criteria: 𝐿𝑃𝑆𝑃, 𝐶𝑂𝐸, 

and 𝑃𝐸𝐺𝑟𝑖𝑑. These objectives are operationalized as follows: 

𝑂𝐹 = 𝑚𝑖𝑛(𝜔1 ⋅ 𝐿𝑃𝑆𝑃 + 𝜔2 ⋅ 𝐶𝑂𝐸 + 𝜔3 ⋅ 𝑃𝐸𝐺𝑟𝑖𝑑)   (22) 

In this study, weight values ω1, ω2, and ω3 were 

meticulously selected to achieve a balance among different 

objectives and optimize the overall outcome of the multi-

objective optimization process. Specifically, the weights 

chosen were 0.5999, 0.4, and 0.0001, respectively. 

3.5. Constraints 

To ensure proper functioning and prevent issues such as 

overcharging or undercharging, the components of grid-tied 

HRPS are subject to specific constraints. In this regard, BBs 
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have defined limits, as outlined in Eq. (23), which ensure that 

the maximum state of charge (SOC) (𝑆𝑂𝐶𝑀𝑎𝑥) corresponds to 

the full capacity of the BB, while the minimum SOC (𝑆𝑂𝐶𝑀𝑖𝑛) 

prevents the BB from being discharged excessively. Another 

imposed limitation in this study pertains to the upper limit of 

LPSP, which should not surpass 5%, as articulated in Eq. (24). 

Finally, constraints related to the power exchange with the 

grid are represented by Eqs. (25) and (26). 

MaxMin SOCtSOCSOC  )(    (23) 

%5LPSP    (24) 

MaxGPGP PtP ,)(     (25) 

MaxGSGS PtP ,)(     (26) 

3.6. Optimization Approaches 

This study employs optimization algorithms; zebra 

optimization algorithm (ZOA) and atom search optimization 

(ASO) to address sizing challenges and achieve the optimal 

configuration of a grid-tied HRPS. 

3.6.1. Zebra optimization algorithm 

Introduced in 2022, the ZOA is a novel bio-inspired meta-

heuristic algorithm that derives its core principles from the 

behavioural patterns of zebras in the wild [41]. This technique 

emulates the foraging patterns of zebras as well as their 

defensive methods against threats from potential predators. 

The following two stages illustrate two innate behaviours 

observed in zebras in the wild, which are employed to update 

the members of ZOA. 

i. 1st stage; foraging behaviour 

In the initial stage, the population members undergo 

updates that mimic the foraging behaviour of zebras in their 

quest for sustenance. The upgrade of zebras' position during 

this phase can be mathematically represented using the 

following equations. 

   2,1,,,
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In the above equations, 𝑌𝑖
𝑁𝑒𝑤,1

, 𝑦𝑖,𝑗
𝑁𝑒𝑤,1

, and 

𝑂𝐹𝑖
𝑁𝑒𝑤,1

denote the updated condition of the 𝑖th zebra, its 𝑗th 

dimension value, and its corresponding objective function 

value as determined by the first stage, respectively, 𝑍𝑗
𝑃 

represents 𝑗th dimension of pioneer zebra, which signifies the 

best-performing member. Moreover, 𝑅 indicates a number 

randomly chosen from the interval [0, 1]. Additionally, 𝐸 =
𝑅𝑜𝑢𝑛𝑑(1 + 𝑅𝑎𝑛𝑑), where, 𝑅𝑎𝑛𝑑 denotes a randomly 

generated number within the range [0, 1]. 

ii. 2nd stage; defence methods against predators 

In the second stage, ZOA updates the positions of its 

population members in the search space by emulating the 

zebra's defensive methods against threats from potential 

predators. In this phase, it is assumed that either one of the 

following two defensive methods occurs with equal 

probability. Firstly, when zebras are exposed to lion attacks, 

they opt for an escape method that can be mathematically 

represented using mode 𝑆1 in Eq. (29). Another scenario is 

when zebras face attacks from other predators, in which case 

they opt for an offensive strategy, modelled using the mode 𝑆2 

in Eq. (29). When upgrading the positions of zebras, if the 

newly generated position yields a superior value for the 

objective function, the zebra will adopt this new position. This 

updating rule is described by Eq. (30). 
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   (30) 

In the above equations, 𝑌𝑖
𝑁𝑒𝑤,2

, 𝑦𝑖,𝑗
𝑁𝑒𝑤,2

, and 

𝑂𝐹𝑖
𝑁𝑒𝑤,2

denote the updated condition of the 𝑖th zebra, its 𝑗th 

dimension value, and its corresponding objective function 

value as determined by the last stage, respectively, 𝑡 is a 

current iteration, while, 𝑇 indicates maximum iterations. 

Moreover, 𝐾 is a constant value that is set to 0.01, 𝑃𝑆 signifies 

the probability employed to determine the selection of either 

of the two strategies, both of which are randomly generated 

within the range of [0, 1]. Additionally, 𝑍𝐴 represents the 

status of attacked zebra, and 𝑍𝑗
𝐴 is its 𝑗th dimension value. 

The ZOA algorithm's procedures and steps are illustrated 

in the flowchart provided in Fig. 3. 

 

Fig. 3. Flowchart of strategies for power management. 
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3.6.2. Atom search optimization 

Introduced in 2019, ASO is an optimization approach that 

draws inspiration from the molecular dynamics of atoms as 

described by atomic theory [42], [43]. In general, matter is 

composed of atoms that have mass and volume. These atoms 

interact with each other through microscopic interactions, 

regardless of the state of matter, and this interaction leads to 

complex structures. The interaction among atoms involves a 

pair of key characteristics: repulsive and attractive forces, as 

shown in Fig. 4. The repulsive force among atoms prevents 

overcrowding and trapping in local minima. When atoms 

move farther apart from each other, the repulsive force 

diminishes, intensifying the attractive force and guiding the 

search towards global minima. In ASO, atoms in the search 

space attract or repel each other based on their distance. 

Heavier atoms have slower acceleration, allowing them to 

exploit the local space more intensively. Conversely, lighter 

atoms have a high acceleration, enabling them to explore new 

regions in the search space. The iterative process persists until 

the solution convergence is achieved, which can be 

mathematically described by the following steps: 

i. 1st step: Randomly initialize the decision variables and 

their positions are characterized as 

  NixxX D

iii ,,1,,,1      (31) 

where, 𝑥𝑖
𝑑(𝑑 = 1, … , 𝐷) denotes 𝑑𝑡ℎ position of 𝑖𝑡ℎ atom 

in 𝐷 dimension space, 𝑁 is atoms number. 

ii. 2nd step: Commence by initializing atoms number, along 

with their positions, accelerations, mass, and velocity (𝑣). 

Utilize the predefined parameters to determine the fitness 

function for each atom. 

iii. 3rd step: Specify the mass of the atoms and the forces that 

operate among each atom as follows: 
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where, 𝑚𝑖(𝑡) denotes 𝑖𝑡ℎ atom's mass at 𝑡𝑡ℎ iteration. 

Additionally, 𝑓𝑏(𝑡), 𝑓𝑤(𝑡), and 𝑓𝑖(𝑡) signify best, worst, and 

function of 𝑖𝑡ℎ atom fitness values at 𝑡𝑡ℎ iteration, respectively. 

𝑓𝑏(𝑡), 𝑓𝑤(𝑡) are expressed as follows: 
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iv. 4th step: In the early iterations, atoms communicate with 

several neighbouring atoms to enhance exploration in the 

search space. Toward the later iterations, interactions with 

fewer 𝐾 neighbours are focused on for better exploitation. 

 
Fig. 4. Atomic forces system [42], [43]. 

 

The parameter 𝐾 decreases over time to achieve this and can 

be considered as. 

 
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v. 5th step: Determine the interaction force (𝐹𝑖
𝑑(𝑡)), and the 

constraint force (𝐺𝑖
𝑑(𝑡)) at 𝑡𝑡ℎ iteration by Eqs. (37), and 

(38). 
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where, 𝑅𝑎𝑛𝑑𝑗 and 𝛽 denote random values ranging 

among 0 and 1, and the multiplier weight, respectively. 

Moreover, 𝑥𝑏
𝑑(𝑡) signifies 𝑑𝑡ℎ position of the optimal atom at 

𝑡𝑡ℎ iteration. 

vi. 6th step: Upgrade the acceleration, velocity, and position 

of each atom by the equations below. 
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where, 𝜌 and 𝑇 represent depth weight and maximum 

iterations, respectively. 

vii. 7th step: If the alteration in the fitness value is 

approaching the best-found value (𝑥𝑏), acquire the 

optimized decision variables. Otherwise, iterate through 

Steps 2 to 7 until the termination condition is met. The 

ASO algorithm's summary is depicted in the flowchart 

presented in Fig. 5. 
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Fig. 5. Flowchart of ASO. 
 

4. Simulation Results and Discussions 

4.1. Study Region 

This grid-dependent HRPS is studied across diverse 

weather conditions in two Egyptian towns: Ras Sudr and New 

Alamein. Ras Sudr is a town situated in the South Sinai 

Governorate of Egypt, positioned along the Gulf of Suez. On 

the other hand, New Alamein City is situated along the 

northern coastline and falls within the administrative 

boundaries of the Marsa Matrouh Governorate. Data for the 

study regions were collected across a one-year period, 

spanning 8760 hours. Figure 6 illustrates the mean monthly 

load demand during the same time frame. In Fig. 7(a) and (b), 

the monthly changes in radiation, ambient temperature, and 

wind speed are shown over a span of one year for Ras Sudr 

and New Alamein cities, respectively [44]. Several 

specifications of grid-dependent HRPS components are 

tabulated in Table 1 [45]. To ensure equitable comparison 

between both optimizers, the number of search agents and the 

maximum iterations for both were set at 20 and 50, 

respectively. Additionally, the parameters for each approach 

were kept consistent. 

 

Fig. 6. The average monthly load demand. 

 

(a) 

 

(b) 

Fig. 7. Weather data of a) Ras Sudr, and b) New Alamein city. 

 

Table 1. Input parameters [45] 

Components  Parameters Values Units 

 

 

 

 

PV module 

Model PV − MLT260HC  

𝑃𝑅 _ 𝑃𝑉𝑀 260 W 

𝑇𝑁  25 °C 

𝜇 0.004 1/°C 

𝑅𝑁  1000 W/m2 

𝐶𝐶,𝑃𝑉𝑀
 112 $/unit 

𝐶𝑂&𝑀,𝑃𝑉𝑀 1%  

Lifespan 25 Years 

 

 

 

 

WT 

Model Fuhrländer FL 30  

𝑃𝑅 _ 𝑊𝑇  30 kW 

𝑉𝐿  2.5 m/s 

𝑉𝐻 25 m/s 

𝑉𝑅 12 m/s 

𝐶𝐶,𝑊𝑇 58564.79 $/unit 

𝐶𝑂&𝑀,𝑊𝑇  3%  

Lifespan 20 Years 

 

 

 

Model RS lead acid battery  

Size 12V(50Ah)  

𝛽𝐵𝐵  0.002  
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Battery 𝜂𝐶𝐵 90%  

𝜂𝐷𝐵 85%  

𝐶𝐶,𝐵𝐵 146.5 $/unit 

𝐶𝑂&𝑀,𝐵𝐵  3%  

Lifespan 10 Years 

 

Converter 

𝜂𝐶  95%  

𝐶𝐶,𝐶𝑜𝑛𝑣 711 $/kW 

Lifespan 10 Years 

Others 𝑚𝑃 25 Years 

𝑖 6%  

 

4.2. An Optimum Design of the First Location 

An in-depth study and comprehension of the available 

power sources at a given location are crucial for any project 

involving renewable energy. This understanding plays a 

pivotal role in accurate modelling and informed decision-

making regarding the feasibility of the project. This subsection 

provides an overview of the results obtained from simulating 

the hybrid system at the initial site, "Ras Sudr". Following 50 

iterations for ASO and ZOA, the ultimate outcomes and a 

comparison between both optimizers are summarized in Table 

2. Illustrated in Fig. 8, ZOA exhibited more favourable results 

compared to the other optimizer. It attained the optimal 

solution of 0.084257 while staying within the predefined 

operational boundaries, achieving this outcome after just 13 

iterations. Meanwhile, ASO attained the optimal solution of 

0.0844 following undergoing 17 iterations. The most effective 

technique, ZOA, picked the optimal COE as 0.104073 $/kWh, 

resulting in NPC of 3,048,356.4 $ and an excellent LPSP of 

2.4967 ∗ 10−10, aligning well with the appropriate value 

(<5%). Furthermore, ZOA predicted the lowest annual CO2 

emissions of 426,273.75 kg. ASO estimated COE of 0.10419 

$/kWh leading to NPC of 3,051,763.87 $, LPSP of 1.2036 ∗
10−4 and annual CO2 emissions of 426,515.94 kg. In 

accordance with the ZOA optimizer, for achieving the lowest 

COE, the recommended configuration entails 2000 PV 

modules, 20 WTs, and batteries count of 349.732 (equivalent 

to 350).  

Furthermore, during times of energy deficit, a total of 

674,483.79 kWh/year is procured from the grid. While, in 

instances of energy surplus, 604,163.12 kWh/year is sold back 

to the grid. 

 

(a) 

 

(b) 

Fig. 8. The convergence curves of a) Ras Sudr, and            

b) New Alamein city. 

Table 2. An overview of simulation results based on ASO and ZOA 

Characteristics Ras Sudr New Alamein city 

ASO ZOA ASO ZOA 

Best objective function 0.0844 0.084257 0.079149 0.078943 

No. of iteration for the optimal solution 17 13 25 12 

Number of PV  1998 2000 1995 2000 

Number of WT 20 20 20 20 

Number of batteries 351 350 445 444 

purchased from grid (kWh/year) 674,866.99 674,483.79 642,331.39 640,831 

sold to grid (kWh/year) 602,705.6 604,163.12 693,622.59 698,331.5 

COE ($/kWh) 0.10419 0.104073 0.096255 0.096106 

NPC ($) 3,051,763.87 3,048,356.4 2,819,346.98 2,814,983.28 

LPSP 1.2036 ∗ 10−4 2.4967 ∗ 10−10 8.535 ∗ 10−5 1.5244 ∗ 10−10 

Dummy Load (kwh/year) 2,117.2 2,124.3 3,013.9 3,067.5 

Carbon emission (kg/year) 426,515.94 426,273.75 405,953.44 405,005.67 
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The ZOA technique's results are depicted in Fig. 9, including 

the hourly energy generation fluctuations for the components 

of the grid-dependent HRPS at this site. The simulation 

outcomes depicted in this figure demonstrate the energy 

contribution from PV modules (PPVMs) and WTs (PWTs), as 

well as the energy involved in charging & discharging the 

battery (ECh & EDch). Additionally, BB's SOC is depicted as a 

percentage of its total capacity (SOC %). Finally, it shows the 

energy exchange with the utility grid, highlighting the selling 

and buying of electricity throughout the operational timeframe 

(EGS & EGP). 

Because of design limitations, meeting optimization 

criteria while entirely avoiding power exchange with the grid 

is extremely difficult. The figure demonstrates that electricity 

is consistently flowing to and from the utility grid. To provide 

a clearer insight into the strategy for power management 

underpinning the optimizers, the simulation outcomes are 

focused on a single day of the grid-tied HRPS's operation at 

its perfect conditions. Figure 10 depicts the simulation 

outcomes for a specific summer day (as an example, 

commencing at time 5064 and extending to 5088) concerning 

the optimal design determined by ZOA. At night and in the 

early morning, PV modules do not produce any electricity, and 

the power provided by WTs is insufficient to meet the 

demand. As a result, there is a positive power difference (PDif 

= PLoad - (PPVMs + PWTs)), indicating that the power demand 

exceeds the combined power generated by PV modules and 

WTs. During these periods, BB discharges energy to fulfil the 

load requirements, and if the energy deficit remains, it is 

compensated by purchasing electricity from the grid. As the 

sun rises, the energy output from PV modules increases, 

leading BBs to commence charging from surplus energy until 

reaching their maximum permissible capacity (80%). As BBs 

charging completion, the excess power is consumed by the 

utility grid. 

Based on the earlier showcased weather data, Ras Sudr 

experiences slightly higher radiation levels compared to New 

Alamein. Specifically, Ras Sudr has an annual average 

radiation of 6.23 kWh/m², whereas New Alamein records an 

average radiation of 6.04 kWh/m² annually. 77% of the overall 

energy for demand is provided by available sustainable 

sources (41% from WTs & 36% from PV), while, the 

remaining 23% is purchased from the electric grid as 

illustrated in Fig. 11(a). On the other side, 79% of the total 

energy consumption is provided to supply the load, while the 

remaining 21% is sold to a utility grid. 

4.3. An Optimum Design of the Second Location 

This subsection presents a summary of the simulation 

results conducted on the grid-tied HRPS at the second station, 

"New Alamein". The simulation outcomes demonstrate that, 

similar to the first location, ZOA yields superior results 

compared to ASO at this site as well. ZOA successfully 

reached the optimal solution of 0.078943 while adhering to the 

predetermined operational constraints, accomplishing this 

outcome after a mere 12 iterations. While, ASO achieved the 

optimal solution of 0.079149 after undergoing 25 iterations. 

 

(a) 

 

(b) 

Fig. 9. ZOA technique results of an optimum design for 

8760 h in a) Ras Sudr, and b) New Alamein city. 

The most efficient approach, ZOA, identified the optimal 

COE as 0.096106 $/kWh, leading to an NPC of 2,814,983.28 

$, which reflects a reduction of 7.7% compared to the scenario 

of installing this hybrid system at the first location, along with 

an excellent LPSP value of   1.5244 ∗ 10−10. Moreover, ZOA 

predicted the lowest annual CO2 emissions of 405,005.67 kg, 

representing a 5% reduction compared to the emissions in the 

first site. According to the ZOA results, to achieve the lowest 

COE, the recommended configuration for this location 

involves 2000 PV modules, 20 WTs, and a battery count of 

444.3595 (equivalent to 444). Additionally, during periods of 

energy deficit, a total of 640,831 kWh/year is procured from 

the grid, which represents a 5% reduction compared to that 

was purchased in the first site. Conversely, during times of 

energy surplus, 698,331.5 kWh/year is sold back to the grid, 

indicating an increase of 15.6% compared to that was sold in 

the first site. 
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(a) 

 

(b) 

Fig. 10. ZOA technique results for a specific summertime 

day (24 h) of operation in a) Ras Sudr, and b) New Alamein 

city. 
 

Taking into account the previously presented weather data, it 

is evident that New Alamein experiences higher wind speeds 

in comparison to Ras Sudr. To be more precise, New Alamein 

records an annual average wind speed of 5.97 m/s, whereas 

Ras Sudr reports an average wind speed of 5.82 m/s annually. 

A significant portion, specifically 79%, of the total energy 

required to meet the demand is sourced from available 

sustainable sources (45% from WTs & 34% from PV). The 

remaining 21% is procured from the electric grid, as depicted 

in Fig. 11(b). In contrast, when considering the overall energy 

consumption, 77% is utilized to fulfill the load demand, and 

the remaining 23% is sold back to the utility grid. 

 

  

(a) 

  

(b) 

Fig. 11. Percentage of energy produced and consumed 

annually applying ZOA in a) Ras Sudr, and b) New Alamein 

city. 

To ascertain the effectiveness and resilience of the ZOA 

optimizer, a total of 30 separate times to run were executed for 

each algorithm. Table 3 provides a statistical analysis of the 

results obtained from both optimizers, showcasing the best, 

worst, standard deviation, and mean values of the objective 

function. The results reveal that the ZOA optimizer exhibits a 

notably lower standard deviation in comparison to ASO, 

signifying the greater robustness of the ZOA algorithm. Figure 

12 displays the convergence curves across 30 separate runs for 

both algorithms. Notably, ZOA identified the optimal solution 

on its 14th run, while ASO attained this on its 30th run, as 

illustrated in Fig. 13. 

Table 3. Statistics of the results for ASO and ZOA 

Statistics Ras Sudr New Alamein city 

ASO ZOA ASO ZOA 

Best  0.0844 0.084257 0.079149 0.078943 

Worst 0.0866 0.084263 0.082245 0.078957 

Mean 0.0854 0.084258 0.080099 0.078944 

Standard 
deviation 

4.8089
∗ 10−4 

1.8113
∗ 10−6 

7.4679
∗ 10−4 

2.7886
∗ 10−6 

Rank 2 1 2 1 
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ASO 

ZOA 

 

(a) 

 

(b) 

Fig. 12. Convergence performance of 30 separate times to 

run in New Alamein city case for a) ASO, and b) ZOA. 

 

  

(a) (b) 

Fig. 13. Final results of 30 separate times to run in New 

Alamein city case with a) ASO, and b) ZOA. 

 

5. Conclusion 

This study has detailed the design and analysis of a grid-

tied hybrid system integrating PV modules, WTs, and BBs for 

two various geographical areas in Egypt. To determine the 

optimal construction of the suggested grid-tied HRPS, two 

optimizers have been utilized and examined using the 

MATLAB program. The overall sizing challenges are 

formulated to achieve equilibrium among three key 

objectives: minimizing COE, reducing LPSP, and curbing 

CO2 emissions. Two scenarios are examined to assess the 

performance of utilized optimizers: the first case study took 

place in Ras Sudr, while the last one is conducted in New 

Alamein. Furthermore, a robustness test is employed through 

statistical analysis to assess and contrast the performance of 

the ASO and ZOA algorithms. The outcomes unequivocally 

demonstrated the superiority of the ZOA algorithm in 

achieving the optimal solution compared to ASO. Based on 

the results obtained for the Ras Sudr site, it is evident that the 

ZOA algorithm yields the lowest values for the following 

criteria: COE of 0.104073 $/kWh, LPSP of 2.4967 ∗ 10−10, 

and CO2 emissions of 426,273.75 kg/year. While in the case 

of New Alamein, ZOA managed to achieve the lowest values 

for the following indexes: COE of 0.096106 $/kWh, LPSP of 

1.5244 ∗ 10−10, and CO2 emissions of 405,005.67 kg/year. 

The results clearly demonstrate that installing this hybrid 

system in the New Alamein region would result in savings of 

NPC amounting to 233,373 $ and a reduction of annual carbon 

emissions by 21,268 kg. Future research works could 

incorporate additional renewable energy sources and diverse 

storage technologies. Moreover, while a grid-connected 

hybrid system with battery storage proves optimal in this 

study, hydrogen energy storage may present valuable 

prospects in various practical environments, warranting 

further investigation. 
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