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Abstract- There is hardly any literature on the optimal sizing of solar PV based renewable energy system (RES) with different 

storage units by using heuristic and meta-heuristic optimization algorithms simultaneously. The objective of this paper is to 

study the feasibility of pumped hydro storage (PHS) and battery bank storage type solar PV based RES for a very low load 

(maximum demand less than 30 kW), only to optimise and make the whole system cost effective and storage practically 

realizable. The modelling for components sizing of the RES is first discussed. Then the individual RESs are techno-

economically optimized taking levelized cost of energy (COE) as the objective function at 100% reliability, i.e. 0% unmeet 

energy (UE) condition. In this, one heuristic optimization algorithm: genetic algorithm (GA), and two meta-heuristic 

optimization algorithms: Firefly Algorithm (FA) and Grey Wolf Optimization (GWO) are implemented for optimal sizing of 

the solar PV and the storage systems. Further, their performances are compared by applying these algorithms to an institutional 

academic block in India. It is shown that GWO is the best optimization algorithm in terms of convergence rate as well as the 

COE and reliability. The results also demonstrate that utilizing a small battery bank with PHS greatly reduces the upper 

reservoir capacity, with least excess energy generation. Moreover, the optimal solution has also improved the low load factor 

of the academic block. Thus the present research contributes as a useful reference to the sizing problem of single resource solar 

PV based RES with different storage units for very low load situation with the help of different optimization algorithms. 

Keywords PV renewable energy system, levelized cost of energy, 100% reliability, low load demand, pumped hydro storage, 

battery storage, optimization algorithms. 

 

1. Introduction 

Solar energy is making a perceptible impact in the life of 

rural and semi-urban clusters [1-2]. Due to this, hybrid 

renewable energy system with feasible storage units is 

considered as stand-alone micro grid for satisfying electrical 

needs of people residing in isolated areas with no grid 

facilities. Although such hybrid systems have been 

commercialized, single resource solar PV based renewable 

energy systems (RES) with practically feasible energy 

storage units have not been studied at large, which is 

important for places where wind is not strong, like the north-

eastern part of India. Due to intermittency, unpredictability 

and stochastic nature of solar energy, feasible as well as 

scalable energy storage units for uninterrupted power supply 

is a need of the hour. Scientists and engineers have 

developed advance energy storage systems with improved 

efficiency and cost [3-21]. Out of these energy storage 

technologies, two most popular energy storages successfully 

applied for renewable energy integration are battery and 

pumped hydro storage (PHS). Although batteries are not 

environmental friendly, have short lifecycle, still these are 

widely used in integration of renewable energy due to their 

simplicity and high load stability nature [17-21]. PHS, on the 

other hand, is a suitable and matured solution for large and 

long-time energy storage as compared to other storage 

technologies. Some of the real projects in remote villages in 

which PHS has been successfully used are discussed in 
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literature [22-25]. In some recent studies, it is seen that 

small-scale PHS can be successfully integrated into the RES 

for small island power supply [26-29]. Ma et al. [26-27] 

reported that PHS based hybrid system is an ideal solution to 

achieve 100% energy autonomy in remote communities. In 

[30], it is reported that PHS can successfully be used in 

stand-alone micro grids if the renewable energy requirement 

is below 300 kW like that of an island. In some very recent 

studies, Ma et al. have again performed techno-economic 

analysis of hybrid RES [28] as well as only solar PV based 

RES [29] involving PHS for power supply in the scale of few 

hundred kW.  

However, none of these studies have explored the practical 

feasibility as well as scalability of PHS in integration with 

single resource solar PV based RES for power supply less 

than hundred kW. Further for small-scale generation, PHS 

alone might not be always feasible as well as scalable for 

small autonomy days and low load demand situation. And 

even in such a case integration of small scale storage like 

battery bank can also reduce the load on the PHS and make 

whole system feasible. For e.g. in [29], the size of the upper 

reservoir of the optimum design is quite large with 13,205 

m3 storage volume and 60 m height. This design in [29] 

could have been made more feasible by integrating battery 

bank into the system as well as optimizing the system by 

using different optimization algorithms simultaneously, 

which was never done before. 

The objective of this paper is to study the feasibility of 

pumped hydro storage (PHS) and battery bank storage type 

solar PV based RES for a very low load (maximum demand 

less than 30 kW), only to optimise and make the whole 

system cost effective and storage practically realizable. The 

modelling for components sizing of the RES is first 

discussed, then the RES is techno-economically optimized 

taking levelized cost of energy (COE) as the objective 

function at 100% reliability, i.e. 0% unmeet energy (UE) 

condition. For this, heuristic GA optimization algorithm and 

two meta-heuristic optimization algorithms, namely Firefly 

Algorithm (FA) and Grey Wolf Optimization (GWO) are 

implemented for optimal sizing of the PV and the storage 

units to the considered load condition. The methodologies 

are applied to an institutional academic block in India, only 

to make the whole system cost effective and storage 

practically realizable for that load condition. In the 

subsequent part of the paper, section 2 incorporates the 

description of the proposed RES model, section 3 

incorporates the description of the modeling and sizing of the 

RES system, section 4 incorporates the description of the 

energy balance models, section 5 incorporates the cost 

analysis, which are then followed by description of the 

optimization algorithms in section 6, results and discussions 

in section 7, and finally the work is concluded in section 8.  

2. Physical model of the RES  

The RES is shown in fig.1, which consists of a PV array, 

pump, turbo-generator, DC-AC converter, upper reservoir 

(UR), lower reservoir (LR), end-user (load), and battery 

bank. Here PV power generation first satisfies the load 

demand then surplus energy goes to pump for elevating the 

water from a lower reservoir to an upper reservoir and thus 

energy is stored in the form of gravitational potential energy. 

In this system two separate penstocks are used, one is for 

pump and the other for turbine. Hence charging and 

discharging processes can occur simultaneously. The double 

penstock system was used in many real projects and by many 

researchers [31-32]. A small head of 30 meter is considered, 

and the head is considered fixed in this paper for entire life 

cycle of the project. Therefore for proper utilization of the 

surplus energy from the PV array, a number of parallel 

pumps are used to increase the net flow rate of water. At the 

time of requirement, water can be drawn-out from the UR 

and passed through the turbine. By using small battery bank 

with PHS, the size of UR can be reduced. The battery 

generally takes the peak hour load and its response to load is 

very quick as compared to PHS. Hence the power supply to 

end-user can be very smooth. This type of system has been 

used in many real projects in the world [29, 33].  

 

 

Fig. 1. The block diagram of a stand-alone RES for 

combined PV, PHS and Battery 

 

3. Modeling and sizing of the RES system 

 The mathematical equations for individual 

components of the renewable energy system are proposed in 

this section. An hour by hour simulation program is then 

developed to size the PV panel, Battery banks, UR, inverter, 

pump and turbine.  

3.1. PV array modeling 

PV panel is a device that directly converts solar radiation 

into electricity by the virtue of Photoelectric effect. The 

power output from PV panel is a function of solar insolation 

and temperature, Eq. (1). 
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Neglecting the temperature effect, the above equation 

becomes-   
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Therefore the energy produced in whole day is given in 

Eq. (3)                                                             

                                                                                                                           

dttPE PVPV )(

24

0

            (3) 

Where )(tPPV
 is the net power output from PV panel 

(kW), 
PVN   is the rated capacity  of PV panel (kW), 

PVY  is the 

PV derating  factor, accounting for the factors like aging, 

soiling, wiring losses, shading, and so on; )(tG  is global solar 

insolation at any time ‘t’(kW/m2); 
oG  is standard global 

insolation and  is the Temperature coefficient for power 

 Ko/1 . 

 

3.2. Battery Modeling 

The capacity of battery storage in ampere hour) is 

determined by Eq. (4)   
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where 
dayn  is number of autonomous days, powered 

absolutely by the battery storage, 
LoadE  is the daily energy 

consumption, 
BatV  is rated battery voltage, DOD is allowable 

depth of discharge, 
effb_   is overall efficiency of battery, and   

is the portion of power that comes from PV to the load. 

Charging and discharging current of battery is defined in 

Eqns. 5 & 6.  
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Therefore the net charge in battery at any time is 

determined from Eq. (7) 
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Where 
eff is efficiency of inverter, 

effb_  is efficiency 

of battery,    is coefficient of self-discharge, 
AhC   is capacity 

of battery in Ah and 
BatV is nominal voltage of battery. 

3.3. Pump modeling 

The water flow rate to the upper reservoir from the lower 

reservoir by the pump is expressed in Eq. (8). The power is 

directly supplied by the PV panel. 
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Where 
PumpP   is power from the PV panel supplied to the 

pump (kW), h is the total head (m), g is the acceleration due 

to gravity (9.8 m/s2),    is water density (1000 kg/m3), 
p   

is the overall pumping efficiency, and Cp is the water 

pumping coefficient of the pump (m3/kWh). Therefore, total 

amount of water pumped in an hour is given by Eq. (9) 
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The total number of pumps needed is decided by:      

 

o
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P

P
N max            (10)                                                                                                 

Where 
maxP is maximum amount of surplus power from 

PV array (kW), Po is rated power of single pump (kW). 

 

3.4. Turbine Modeling 

 In the case of energy deficiency, water is drawn 

from the upper reservoir in order to operate the turbines. The 

released power from the turbine at any given time is: 

     )(.)()( tqCtqhgtP TTTTT           (11) 

Where 
T is the overall efficiency (including pipe 

efficiency) of the turbine, )(tqT
  is the volumetric flow rate of 

water towards the turbine (m3/s), 
TC is the coefficient of 

turbine (kWh/m3). Therefore, total amount of water input 

into the turbine in an hour is given by Eq. (12) 
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3.5 Upper reservoir (UR) Modeling 

The water quantity stored in the UR should be sufficient 

to satisfy power demand in case of no power supply for 

several consecutive days [26, 29]. The water level in the UR 

can be considered as the state of charge (SOC) of the storage 

tank. The gravitational-potential energy stored in the UR is 

given by- 
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Where 
CapE is the energy storage capacity of a water 

reservoir (kWh); 
URV  is the volume or storage capacity of the 

water reservoir (m3). Therefore, the total quantity of water 

stored in the UR at any time ‘t’ is determined by: 
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      )()()1)(1()( tQtQtQtQ TPURUR         (14) 

Where   (0.05) is the evaporation and leakage loss. The 

water quantity of the upper reservoir will be subject to the 

following constraints: 

URURURUR VQQQ  maxmin
                                  (15) 
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minURQ is the maximum water stored in UR, which is usually 

set as zero. 

 

4. Energy Balance Models for Power Generation and 

load Consumption 

The generalized energy balance model of the solar power 

generation system at time t is expressed as: 

    )()()()()( .. tPtPtPtPtP DumpBatPumpLinvPV         (17) 

Where 
.inv is the inverter efficiency, which is the ratio of 

the inverter’s AC output power to DC input power, )(tPL
is 

the solar power output directly delivered to the load; )(tPPump
  

is the power transferred to the pumps for charging Upper 

reservoir; )(. tPBat
 is the power transferred to the battery  and   

)(tPDump
is the excess energy delivered to a dump load. The 

load demand is mainly covered by three sources, so the 

energy balance mode of load consumption is given by 

                )()()()( . tPtPtPtP BatTurbineLTL          (18) 

Where )(tPL
 is the power directly delivered from the RES 

generator; )(tPTurbine
 is the power produced by the turbo-

generator, 
.BatP is the power produced by the battery.  When 

the net load is negative or zero, no supplementary energy is 

required and thus )(tPTurbine
 and 

.BatP  are zero 

5. Cost Analysis 

In this study, total life cycle cost (LCC) is used to 

analyze the system’s economic performance. LCC includes 

the cost of construction (CC) including the installation cost 

of the single resource solar PV system, replacement cost 

(RC), and operating and maintenance (O&M) cost. 

Replacement cost is considered as the depreciation cost, 

which is considered 10% of the cost of construction. The 

total life cycle cost (LCC) can be calculated according to Eq. 

(19) 

                         

RCMOCCLCC  &          (19) 

a) Interest rate 

The annual interest rate is the discount rate used to 

convert one-time costs into annualized costs. It is related to 

the nominal interest rate [33]. 
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Where  i is the interest rate, i/   nominal interest rate, and   

f is the annual inflation rate. 

 

b)  Replacement cost  

The total replacement cost (RC) of main components is 

given by- 
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N
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Where 
irepf  is a factor arising because the component 

lifetime can be different from the project lifetime, which is 

defined in Eq. (22) 
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SFF = Sinking Fund Factors is defined as in Eq. (23)  

      
1)1( 


ni

i
SFF                               (23) 

Then selvage value of the components is define as in Eq. 

(24) 
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L
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Where  
remL  is remaining life of components, 

compL is 

total life of components, and 
repC   is the replacement cost 

factor. CRF is Capital recovery factor, which is defined as in 

Eq. (25) 
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So, the total Annualized Life Cycle Cost (ALCC) is defined 

as in Eq. (26)  

CRFLCCALCC                                        (26) 

Where ‘n’ is life of project. 

 

c)  Cost information of the components 

The cost of major components, namely PV module, Battery, 

Pump, Turbine, Inverter and Reservoir are taken as per 

market rate. The capital cost, O & M cost and replacement 

cost of all the components have been considered. A summary 
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of the cost information about the major components and their 

corresponding lifespan is presented in Table 1. The project 

life is assumed as 25 years. 

Table 1. Major components cost and life 

Component Unit 

Capital 

Cost($) 

Life 

cycle 

(Year) 

Replacement 

cost  ($ ) 

O & M cost 

$/kW-year 

% of capital 

cost 

PV panel 

(200kWp) 

300 25 200 0.2% 

Battery  65 3 65 00% 

Inverter  900/kW 15 900 0.5% 

Solar DC  

pump  

230 /kW 10 180 0.5% 

Turbine with 

pipes 

600/kW 10 400 0.5% 

Upper reservoir  150/m3 35 150 0.5% 

 

Table 2. Some constant parameter  

Parameter  Value 

Battery efficiency ( effb_ ) 
85% 

Inverter efficiency ( inv ) 
92% 

Pumping efficiency ( p ) 
80% 

Turbine efficiency (
T ) 70% 

Derating factor ( PVY ) 
85% 

Total head (h) 30 m 

Nominal interest ( 'i ) 7% 

Annual interest due to inflation( f ) 

Life of project (n) 

4% 

                        25 years 

 

d)   Levelized cost of energy (COE) 

The levelized cost of energy (COE) is considered as a 

principal cost of economics for figuring out the merit of the 

all the systems. It is a ratio of the annualized life cycle cost 

of the system to the daily energy demand. In other word it is 

the cost per unit electricity generated ($/kWh). 

 

LoadE

ALCC
COE                                 (27) 

The nominal interest rate and annual inflation rate along with 

other parameters are provided in Table 2. In table 2, derating 

factor of 85% is considered. In electronics, derating is the 

operation of a device at less than its rated maximum 

capability in order to prolong its life. Therefore, derating 

factor of 85% implies that solar PV system is assumed to be 

operated at 85% of its rated capacity. 

 

 6. Optimization Algorithms through Heuristic and Meta-

Heuristic approaches 

 In this work, for finding out the least possible value 

of COE for each system, three well-known optimization 

algorithms, namely Genetic algorithm (GA), firefly 

algorithm (FA), and Grey wolf optimization (GWO) have 

been applied simultaneously.  

 

6.1 Heuristic Approach 

 Genetic algorithms are categorized as global search 

heuristics approaches. Basically the GA optimization is 

inspired by natural evolution, such as inheritance, mutation, 

selection, and cross over which is well demonstrated in fig.2 

[34-35]. In GA the evolution usually starts from a population 

of randomly generated individuals and that continues in 

generations.  In each generation, the fitness of every 

individual in the population is evaluated, then multiple 

individuals are selected from the current population (based 

on their fitness function), and they are modified (recombined 

and possibly mutated) to form new population/generation. 

The new generation is then used in the next iteration of the 

algorithm. Commonly, the algorithm terminates when either 
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a maximum number of generations has been performed, or a 

satisfactory fitness level has been reached for the population. 

 

Fig. 2. Flow chart of GA Optimization 

 

6.2 Meta-Heuristic Approach 

Meta-heuristic optimization approaches have wieldy used 

and these have become very popular over the last two 

decades because of their simplicity, flexibility, derivation-

free mechanism, and local optima avoidance. 

 

6.2.1 Firefly algorithm  

 Firefly algorithm (FA) is a meta-heuristic and 

natural-inspired algorithm, developed by Yang in late 2007-

2008 [36]. Three flashing idealizing characteristics of 

fireflies to develop firefly inspired algorithm are:- 

Fireflies are having same gender such that one firefly will 

be attracted to other fireflies regardless of their gender. 

 Its attractiveness is proportional to the brightness, and they 

both decrease as their distance increases. 

 The firefly’s brightness is determined by the landscape of 

the objective function. 

 

6.2.1.1 Mathematical Modeling and Algorithm for FA 

The attractiveness of fireflies is directly proportional to 

intensity of light, i.e. the variation of attractiveness of ''   

with distance of ‘r’, which is given by Eq. (28) 

       
2r

oe
              (28) 

Where   is absorption coefficient and 

     β = 
o at  r = 0                           (29) 

In order to attract next brighter firefly ‘j’ by the previous 

firefly ‘i’, the vector traced at time (t+1) is determined by Eq. 

(30)- 

t

it

t
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t
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O

t

i

t

i XXeXX ji 



 )(

2
,1

        (30) 

First term is the random vector number at time‘t’, the second 

term is for attraction, and the third term is for the 

randomization with having 
t   as randomizer. t

i is Gaussian 

distribution of random vector number at time‘t’. 

The 
t  is taken for parameter controlling during the 

iterations which is defined as Eq. (31) 

       )10(,   t

Ot
         (31) 

But in most of the cases the value of  lies between 0.95 and 

0.97, and 
O  = 0.1L where L is average scale of the problem. 

The initial guess value of variables is taken as per Eq. (32) 

       ))(()(0 LbsizerandLbUbLbU          (32) 

Where U0  is initial value of the variable; Lb and Ub is lower 

and upper bound values of the given variable. Figure 3 

summarizes the algorithm for the FA. 

 

6.2.2 Grey Wolf Optimization 

The Grey Wolf Optimization (GWO) is a latest and most 

popular meta-heuristic algorithm developed by Mirjalili et al. 

[37] in 2014, which is inspired from the grey wolves in 

nature. The wolves have been categorized in four types such 

as alpha (α) - “The leaders of the group”; beta (β) - “The 

subordinate wolves that help the leaders”; delta (δ) - “The 

third level wolves who submit to α and β” and omega (ω) - 

“The lowest ranker wolves of group who have surrendered to 

all the other governing wolves”. And these four are 

employed for simulating the leadership hierarchy. This 

algorithm uses three main steps of hunting; at first searching 

for prey (exploration), then encircling prey, and finally 

attacking prey (exploitation). The GWO algorithm is 

benchmarked on 29 most popular test functions, and the 

GWO has been able to provide highly competitive results 

compared to very popular heuristics and Meta-heuristic 

approaches. The GWO algorithm has showed its high 

performance in the unconstrained as well as in constrained 

type problems [38-40]. The convergence process of GWO is 

quite fast as compared to other algorithms. 

 

6.2.2.1 Mathematical Modeling and Algorithm for GWO 

The encircling modeling behaviour of wolves at current 

iteration ‘t’, at PX


position vector of prey and with 


X   

position vector of wolf is written as Eq. (33-36) [37]. 
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    Fig. 3. FA algorithm flow chart 
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

A  and  


C  are coefficients of the position vector,  


a  is a 

linearly deceased vector from 2 to 0 over the maximum 

iterations and  


1r  and 


2r  are the random vectors in the range 

of [0,1]  as depicted in Eqs. (37-43). 
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Here alpha ''  is taken as the best fittest solution of the 

objective function, beta ''  and delta ''  are second and 

third best solutions, and rest of all the solutions are taken as 

omega '' . Fig.4 summarizes the GWO algorithm.    

 

6.3 Optimization  Strategy 

In the Single-objective optimization, the main objective is to 

minimise the value of COE. Three optimization techniques 

such as GA, GWO and FA  have been used to find out the 

least possible value of the levelized cost of energy (COE). 

The COE is taken as the fitness function without any type of 

power faliure i.e. 100% reliability of power supply to the 

load. The optimization algorithm have been run on 

MATLAB 2014 Software. The fitness function for all three 

proposed configration is shown in Eq  (44).  

                                                                                                           

)(min_ COEfZ             (44) 

 
%0UE   is taken as the constraint. The lower and upper 

bounary of  NPV,CAh and VUR  are given in Eqs. (45-47). 

  

  1000100  PVN         (45) 

800050  AhC         (46) 

5000100  URV         (47) 

  

Where NPV= size of PV panel (kW), Ah= capacity of 

battery, VUR = upper reservoir volume (m3). The above 

objective function has one indirect constraint (UE %). And 

hence in optimization-tool box of GA, which is inbulit in the 

MATLAB Software, the following have been considered: 

o The constraints box remains empty.  

o In the population box “Feasible population” is 

selected. 

o The “Stochastic uniform” is selected in selection 

function box.  

o 0.05*population size default function is chosen for 

reproduction function box. And cross-over fraction 

is 0.8 as default value. 

o In the Mutation function box “Adaptive feasible” is 

selected. 

o The “Heuristic function” is chosen for cross-over 

function with having 1.2 default ratio. 



 XXCD a1
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o Then the “Forward direction of migration” is used. 

o Finally, the number of generations is selected as 

“200” for all the three systems. 

Similary for firefly  algorithm (FA)  the following 

parameters have been used 

o Number of searching agent (fireflies) / population  

= 20. 

o The maximum number of genetarions/iteration  

= 300 

o Number of variables for the system (i.e. 

PV/PHS/Bat) is three. 

o The lower bound [Lb] and upper bound [Ub] of 

variable are considered as per Eqs. (45-47). 

 

For the GWO algorithm the following parameters have been 

used:- 

o The number of searching agents wolves)/population 

= 20. 

o The maximum number of iterations/generations  

o  = 300 

o Number of variables for the system (i.e. 

PV/PHS/Bat) is three. 

o Some default constants for alpha (α), beta (β), and 

gamma   (γ ) are 0.5, 0.2 and 0.1 respectively.   

o The lower bound [lb] and upper bound [ub] of 

variable are considered as per Eqs. (45-47). 

 

The system optimization process flow chart for the PV/ Bat. 

/PHS is illustrated in fig.5. The optimization process starts 

with the random guess value of the system variables (like 

size of PV modules, size of battery capacity and size of UR) 

then consequently runs through all the steps of the 

algorithms, and continues until archives stop category or 

reaches max-iteration/ max-generations. In this, SOC of 

battery is taken between 50% and 90%. With this the battery  

life can be improved because the high depth of discharge and 

over charge are usually harmful for the battery. 

 

 Fig. 5. Flow chart of Optimization PV/ Bat/ PHS 

 

6.4   System Reliability Model 

 In this study, the system reliability is evaluated 

based on the percentage of unmeet energy (UE) per year, 

which is defined as the total power supply failure divided by 

the total energy demand over a year [26, 40-41]. The 

reliability study is done to evaluate whether a system is able 

to fulfill the load demand, and if there is any deficiency, then 

to calculate the percentage of insufficient energy. Another 

most important index which is widely used is percentage of 

excess energy (EE) in a year. The index UE and EE are 

calculated as follows in Eqs. (48, 49) respectively.  

     100

)]()([)(

(%)

8760

1 
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


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Fig. 4. GWO algorithm flow chart 
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7. Results and Discussions 

The proposed RES system is employed in an institutional 

academic block with low load factor, which is situated in 

north-eastern India. This academic block is a 4-storey 

building, which consists of large rooms for laboratories and 

faculty cabins. A survey for the electricity consumption of 

the building was conducted for collecting all these load data. 

Figures 6 and 7 show the hourly variation of load for winter 

and summer respectively. As can be calculated, the load 

factors of both the seasons are very low, which is around 

0.131 during both winter and summer. The load factor is 

defined as the ratio of the average load to the peak load.  

Also the daily average energy consumed is also quite low, 

which is 88.7 kWh. The major load requirement during 

weekdays in any season occurs during the afternoon time due 

to laboratory classes that are conducted then. The weekend 

load is lower due to less running of the major equipment and 

machineries of the academic block. 

 

 
Fig. 6. Daily electricity demand variation for the winter 

 

 
Fig. 7. Daily electricity demand variation for the summer 

 

7.1   For combination of PV and PHS with 0% UE   

Figure 8 shows that for GA, the converged COE is $1.3626/ 

kWh, which is obtained after 60 generations. Now, it can be 

observed from fig.9  that both GWO and FA techniques give 

the same least value of COE, i.e $ 1.3193/ kWh, having PV 

array of 180 kW (1258.74 m2), pump size of 150 kW, turbine 

size of 28 kW, upper reservoir of size 2244.5 m3 and inverter 

size of 32 kW as shown in table 3. Besides PV capacity, 

values of all other parameters are less than those obtained by 

GA.  In this case, the GWO converges faster than the FA and 

GA as shown in fig. 9, which happens just after 40 

generations.   
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Fig. 8. Converged curve (variations of COE during GA 

optimization process) 
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Fig. 9. Converged curve (variations of COE during GWO & 

FA optimization process) 

 

7.2  For combination of PV, PHS and Battery with 0% UE 

By integrating the battery bank in the RES, the simulations 

are run, and the results are represented in fig.10 & 11. In this 

case also GWO converges faster than the FA (less than 10 

iterations), and GA converges later after 150 generations. FA 

converges in between that of GA and GWO. The GWO has 

converged at $0.9109/kWh whereas FA and GA have 

converged at $0.9116/ kWh and $0.9632/ kWh respectively. 

Therefore, GWO is the best algorithm in terms of 

convergence rate as well as the COE. Further, integrating 

battery banks seems to be more feasible for this low load 

demand situation as the COE has decreased below than the 

combinations of only PV and PHS. The optimal sizes of 

components obtained from GWO are 142.90 kW of PV 

panel, 1192.50 m3 of UR, battery banks of 1811.7 Ah, 97.083 

kW of pump and 22.164 kW of turbine as shown in table 4. 

Moreover, using small size battery banks with PHS, the size 

of UR has greatly reduced (from 2244.5 m3 down to 1192.50 

m3). And the excess energy has also decreased as compared 

to the previous combination of only PV and PHS, which is 

25.26 kW as compared to 35.07 kW. 
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Table 3: Results of optimization of the combinations of PV and PHS 

PV/PHS Cost($/kWh) Excess Energy (%) PV (kW) Ur (m3) 

GA 1.3626 39.078 164.94 2554.3 

FA 1.3193 35.075 180 2244.5 

GWO 1.3193 35.075 180 2244.5 

 

Table 4: Results of optimization of the combinations of PV, PHS, and Battery 

PV/Battery/PHS Cost($/kWh) Excess Energy 

(%) 

PV (kW) Bat (Ah) Ur (m3) 

GA 0.9632 27.828 142.37 1720.672 1229.650 

FA 0.9116 25.46 143.15 1722.50 1193.90  

GWO 0.9109 25.26 142.90 1811.70 1192.50 

 

 
 

Fig. 10. Converged curve (variations of COE during GA 

optimization process) 
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Fig. 11. Converged curve (variations of COE during GWO & 

FA optimization process) 

 

 

Three to four trials have been performed for each algorithm. 

After this the converged value does not change much. As all 

these algorithms are based on random selection of initial 

value, therefore usually during the iterations of each trail, the 

initial value and the convergence curve do not remain the 

same. However after 80-100 iterations in each trial, the value 

of COE converges to a fixed value (Fig. 8-11). The average 

time elapsed for say 200 iterations is 3 to 4 hrs in each trial.  

Here the speed of iteration depends on the specification of 

computer. In this case, it is Intel Core i7-2600 3.4GHz 

Processor. 

  A plot of hourly load shearing simulation curve for 

the combinations of PV, Battery, and PHS of a sample day is 

shown in Fig.12. In this plot it can be seen that battery is 

charging at first directly from the PV power till noon time. 

After 90% SOC of the battery, pump start pumping the water 

from lower reservoir to upper reservoir immediately before 

the noon time. Due to evaporations, SOC (%) of upper 

reservoir has decreased during the battery charging hours 

(5:00 am to 12:00 am). The turbine has started when the 

SOC of battery goes below 50% at about 4 p.m. after which 

the turbine meets the load of the building throughout the 

night as can be seen from fig.12. and for which the SOC of 

upper reservoir starts decreasing. There is no excess energy 

generated during that sample day and also no loss of power 

supply has occurred, except a small dump load generating 

between 12 o’clock and 5 o’clock due to the combined SOC 

of the upper reservoir and the battery bank. During the whole 

year, the net amount of electricity generated through the PV 

is 191,300 kWh, in which the peak power production is 

128.203 kW. The electricity produced by PV panel is divided 

into four parts. About 80,971 kWh (42.33%) is transferred to 

the water-pumping units, and 32.41% directly goes to the 

load and battery banks. However, about 25.26% of the total 

PV production is dissipated in the form of dump load. The 
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simulated plot also demonstrates that the academic block’s 

load has been balanced very well with this system. Figure 13 

shows the comparison between the new load profile as 

generated by the optimal solution and the building actual 

load profile for a single day. It can be noted that at first part 

(day-time) the energy is stored in batteries in the form of 

electro-chemical energy and consequently in UR in the form 

of gravitational potential energy; in second part, this energy 

is dispatched to cater the load demand (firstly from batteries 

and afterwards from UR). The load factor of new load profile 

is 0.308, whereas actual load factor of building is 0.131, and 

hence load factor is improved by 0.177. The reason for the 

increase of load factor is due to higher load sharing by the 

RES before noon than the grid connected building load 

profile. Figure 14 illustrates the sharing of LCC among its 

components for the proposed configuration. 82% of LCC of 

the system is attributed by PV and UR; however rest 18% of 

LCC is shared by all other components of the system. The 

net annualized LCC for this optimal configuration is $29,214 

and corresponding COE is $0.9109. In this configuration, the 

higher cost item is PV panels ($225,070) and least cost item 

is turbine ($15,467). 

  Figure 15 illustrates the relative frequency of 

battery’s SOC (%) and UR’s SOC (%) for the entire year. 

The battery SOC is within 50% to 90% whereas for UR it is 

from 0% to 100%. It can be observed that higher percentage 

of distribution frequency for battery lies within 70% to 80% 

(i.e. 47.91%) whereas that for UR lies within 80% to 90% 

(i.e. 45.81%). Here about 47825 kWh of excess electricity is 

produced during the 8760 hrs time, which is near about 

25.26% of total PV power production in a year, which is 

quite small. The results indicate that the maximum 

percentage of relative frequency (about 21.14%) of its SOC 

values lies within 80% to 90%. The relative frequency of 

12.59% has occurred for 90% to 100% of SOC. Here it can 

be noted that the high relative frequency percentage of its 

SOC lies below 90% for both the storage units, i.e. for UR 

45.81% of relative frequency has occurred for 80% to 90% 

of SOC, and for battery bank 47.81% of relative frequency 

has occurred for 70% to 80% of SOC. 

 
Fig. 12. Hourly energy balance curve on sample day   

 
Fig. 13. The new load and actual load profile 

 

 
Fig. 14. Break-down of LCC by components 
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Fig. 15. The relative frequency v/s UR SOC 

 

 

8. Conclusıons 

  The objective of this paper is to study the feasibility 

of pumped hydro storage (PHS) and battery bank storage 

type solar PV based RES for a very low load (maximum 

demand less than 30 kW), only to optimise and make the 

whole system cost effective and storage practically 

realizable. From the study the following conclusions can be 

summarized: 

a) The GWO is found to be the best optimization algorithm 

in terms of convergence rate as well as the COE and 

reliability. Combined PV, PHS and battery based RES is 

found to be the optimal solution for the given low load 

situation compared with only PV and PHS based RES. The 

optimal solutions are 142.90 kW of PV panel, 1192.50 m3 of 
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UR, 1811.7 Ah of battery banks, 97.083 kW of pump and 

22.164 kW of turbine. 

 

b) Utilizing a small battery bank with the PHS greatly 

reduces the upper reservoir capacity (2244.5 m3 to 1192.50 

m3), and improves the power supply reliability with least 

excess energy of 25.26 kW as compared to 35.07 kW for 

only PV and PHS based RES.   

 

c) For the combined PV, PHS and battery based RES, the 

high value of relative frequency of the SOC for UR and 

battery banks has occurred for below 90% of SOC, and due 

to this the percentage of excess energy (EE) is greatly 

reduced.  

 

d) The load factor of the new load profile generated by the 

optimal solutions is 0.308. Hence the optimal solution of 

combined PV, PHS and battery based RES has improved the 

low load factor of the academic block.  

 

  Thus the present research contributes as a useful 

reference to the sizing problem of single resource solar PV 

based RES with different storage units for very low load 

situation with the help of different optimization algorithms. 
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