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Abstract- With the rapid increase of renewable-energy capacities, the management of grid-connected wind farms is becoming 

more and more important. In this paper, a very short-term wind power prediction (VSTWPP) method with hybrid strategy based 

on risk evaluation is proposed. The VSTWPP is essential for both producers and consumers in the electricity market, because it 

can reduce uncertainties of wind power fluctuation and thus maintain power balance, security and quality of the system. This 

paper focuses on a hybrid approach with correction (HWC) strategy for the VSTWPP method, in which the Gaussian model is 

applied to calculate the probability distributions of wind power value and its error during different time periods and different 

methods. The WPP process includes: 1) Wind power ratios are predicted using the hybrid approach of multiple linear regression 

and least squares; 2) Transformation of these ratios is performed to obtain predicted wind power values; 3) Correction strategy 

is implemented to obtain the final results of WPP. Besides, in order to observe the prediction performance, WPP model with 

HWC, with the hybrid approach without correction (HWoC), with autoregressive moving average (ARMA) and with 

autoregressive integrated moving average (ARIMA) are examined respectively. The results confirm the accuracy and validity of 

the proposed HWC-based VSTWPP method, and show great promise for the prediction within intricate time series, which are 

highly volatile, irregular and uncertain. The obtained results confirm an observable accurate for the prediction validity of the 

proposed hybrid approach with correction strategy. 

Keywords- wind power prediction, hybrid approach, normal distribution, correction strategy. 

Nomenclature  

WPP            wind power prediction 

VSTWPP    very-short-term wind power prediction 

MLR            multiple linear regressions 

LS                least square 

HWC           hybrid approach with correction strategy 

HWoC         hybrid approach without correction 

R                  risk evaluation index 

t                 length of prediction or time period (minute) 

T                  width of prediction time window (minute) 

ARMA        autoregressive moving average 

ARIMA       autoregressive integrated moving average 

ANN            artificial neural network 

BP                back propagation 

RBF             radial basis function 

NWP            numerical weather prediction 

PDF             probability density function 

CDF            cumulative density function 

RMSE         root mean square error 

MAPE         mean absolute percent error 

MSE            mean square error 

1. Introduction 

Wind power generation has effects on power system 

operation reliability and efficiency. These effects are apparent 

in three aspects of power system: the security, stability and 

power quality. However, connecting wind power plants to an 

existing electricity network may lead to increased uncertainty 

in the operation of the energy system. In this paper, we 

evaluate the HWC-based WPP performance by comparing 

simulation results using different methods. 

Wind power is considered as one of the most attractive 

renewable-energy sources because of its high-efficiency and 

low pollution. However, the penetration of wind power in 

power grid brings several challenges to system stability. In 

terms of power system operation, accurate prediction of wind 

power can reduce the unreliability of electricity supply, and 
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increase wind power penetration [1, 2, 25]. An unexpected 

variation of wind power output may increase uncertainty for 

the electricity system, which requires high-accuracy 

prediction of wind energy properties. In addition, accurate 

WPP plays an essential role in the balancing of power system. 

One of the most important priorities of wind power research 

is to improve the performance of prediction method [2], such 

as improvements of WPP techniques by a number of scientific 

hypotheses [3]. 

Connecting wind power farm to power network increases 

the variability and uncertainty of power grid. Therefore, 

applying accurate prediction techniques, such as time series 

prediction, combined prediction, multi-step-ahead and single-

step prediction, is essential to assure system stability [4, 27]. 

Nowadays, some other approaches are developed to predict 

wind power. For instance, the hourly level of WPP data can 

be calculated by Gray Correlation Analysis [5]; a novel of 

VSTWPP approach based on numerical weather prediction 

and error correction method is an effective way to overcome 

the challenge in WPP [6]. While data of wind power have very 

strong non-linearity and non-stationary, and the traditional 

approach just focuses on solving the non-linear problem, the 

combining approach of atomic sparse decomposition and 

artificial neural network (ANN) could solve the non-stationary 

problem as well [7]. 

The proposed works for VSTWPP are generally based on 

the prediction horizon from several minutes to one hour. The 

horizon in this paper is carried out by the hybrid approach with 

correction strategy, which is more accurate than other models 

used in this work. The application of the hybrid approach 

based on the combination of particle swarm optimization 

intended to reduce WPP’s error [8, 28]. The accurate 

prediction can be achieved by a new hybrid technique for 

VSTWPP with real-time [9]. In addition, the prediction 

accuracy of WPP by the new hybrid short-term WPP based on 

the combination of neural network and imperialistic 

competitive algorithms are analyzed in [10]. The hybrid 

method of WPP, with novel time-series based on K-means 

clustering, enhances the value of wind energy by improving 

the reliability and increasing economic feasibility [11]. 

The ARMA model is one of the most popular methods for 

prediction. It can be effectively used to predict the behavior of 

a time series just from past values, especially in wind power 

prediction where it is suggested to be effective as compared to 

those obtained from other models. The ARIMA model is a 

popularization of ARMA model, and is applied in some cases 

to historical data with evidence of non-stationary. The 

statistical methods used in WPP, including ARMA and 

ARIMA models, which are used to find out the inherent 

structure within the measured wind power data [4, 26, 30]. It 

is important to reveal and improve the fluctuation of wind 

power, by use of the ultra-short WPP based ARMA model 

[12]. The hybrid ARIMA-ANN model is to be used to 

facilitate an increase in the forecasting accuracy of a linear and 

a nonlinear component of a time-series data [13, 29]. The 

ARIMA model and time series based on Markov Residual 

Correction to perform accurate WPP and reduce error values 

[14]. The numbers of the approaches have been introduced to 

improve WPP, such as ARMA and Generalized 

Autoregressive Conditional Heteroskedasticity [15]. 

In recent years, some new technologies such as neural 

networks are often used for WPP. ANN is used to reduce 

uncertainty from wind power [16]. Meanwhile, BP neural 

network is used to improve the generalization ability of ANN 

and prediction accuracy [17, 18, 24]. ANN techniques were 

used with NWP models to get the accurate WPP [19]. 

Recently, some of WPP approaches that include short-term 

WPP method is based on RBF neural network, multi-layered 

feed-forward ANN, the new Imperialistic Competitive 

Algorithm Neural Network (ICA-NN) method with NWP; 

wavelet transform are used to predict wind power [20-23]. 

This paper, extending the application of the risk 

evaluation index, aims to show a detailed mathematical model 

of the wind power plant connected to the power grid. The 

system contains other generations, which causes wind power 

uncertainties in the power grid. However, the effects of the 

uncertainty can be reduced by the accurate calculation. This 

study proposed a new efficient approach with correction 

strategy for pattern feature vector structure, probabilistic 
distribution of power and power error. In this work, risk 

evaluation index for VSTWPP errors has been proposed to 

achieve stable and economic operation of the power system. 

Risk evaluation index can be directly accumulated as risk 

operating of VSTWPP error on security, and economy cost. 

The contribution of this work is to propose a new hybrid 

approach, MLR & LS with correction strategy, for VSTWPP 

in Northeast China. Meanwhile, this paper introduces several 

indexes for HWC accuracy evaluation, including the root 

mean square error value (RMSE), the mean absolute 

percentage error (MAPE), the mean square error (MSE) and 

the linear correlation coefficient (r). The first three indexes are 

well-known and used to evaluate prediction accuracy with the 

smaller but more accurate index value. The last one measures, 

the strength and the direction of a linear relationship between 

actual and predicted values with the higher r being of more 

accurate. 

2. Methods for VSTWPP 

This section introduces several methods with the width of 

prediction time window  1 h. Firstly, the proposed approach, 

HWC, is generally explained; then, the details of the HWC 

algorithm steps and HWoC model are introduced; lastly, 

ARMA and ARIMA approaches are presented. In addition, 

the evaluation of the prediction performance is also discussed. 

2.1. Description dataset and the region 

Wind power data is collected by SCADA systems of wind 

farm; the data in this paper is averaged into time intervals, 5 

minutes, which are suitable for various applications. The data 

used in this study was collected at every one-minute intervals 

(called 1’s data) at a wind farm for a period of hour, day, and 

month up to one year. The proposed approach is tested on 5-

minute mean wind power data provided by the Northeast 

China of wind farm power generation at eight wind farms. 
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Data from one year are available comprising at each site. The 

wind farm location in Northeast China. Some of the data are 

used as a training set on which the implementation of the 

fitting procedure is optimized by cross validation, and using 

data processing step is chosen. The other data are then used to 

evaluate the performance of the prediction approach, and the 

results confirmed that. 

2.2. HWC model 

The proposed approach is based on the hybrid of multiple 

linear regressions and least square (MLR & LS) with 

correction strategy (HWC). The MLR & LS are used to 

calculate the coefficients for minimizing the error and to 

improve the performance of the HWC. It can be used to predict 

wind power of a time series from historical values alone. The 

HWC is most accurate with lower expected error. 

The general form of the MLR models is as follows: 








1

0 )()(ˆ

i

ii kwkW                                        (1) 

Where, )(ˆ kW is the predicted variable; wi (k)
 
is the historical 

wind power (predictor variables); i
 
is regression coefficient 

to be computed;  is the maximal order of regression; k=1~N, 

N is the length of the prediction variable;  is regression error. 

In order to estimate regression coefficients, we take the 

least squares approach in simple linear regression case that it 

is minimized as: 

 
 


N
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ii kwkWL
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To minimize L,   should be as Eq. (3): 

Wwww ˆ)(ˆ 1 
                                                       (3) 

For the proposed approach, the ratio to total wind power 

is used in the following steps for improving the performance 

of WPP: 

1- Ratio to total WPP is defined as following: 

 wwX ii                                                              (4) 

Where, wi is the wind power from the ith wind farm, and w 

is the total wind power of the farm cluster including the ith 

wind farm. 

2- After getting ratio Xi and total wind power w, the 

WPP of  ith wind farm is as following: 

 wXW ii                                                            (5) 

3- Use correction strategy to calculate the correction 

ratios as following: 





n

i

ii

Corr

i XXX
1

                                                    (6) 

4- Finally predict wind power by using correction ratios 

and total wind power from the wind farm cluster: 

 wXW
Corr

i

Corr

i
ˆ

                                                 (7) 

Algorithm steps of the proposal approach for WPP in 

Matlab code are as follows: 

Input data: 

))(),......,3(),2(),1(( 0000)0(
nwwwwwa   — time series 

of sample data; 

))(),......,3(),2(),1(( 0000)0(
nXXXXX  —  time 

series of ratios; 

))(),......,3(),2(),1(( 0000)0( nttttT   —  sample time 

(per minute). 

Output data: 

))(ˆ),......,3(ˆ),2(ˆ),1(ˆ(ˆ 0000)0( nXXXXX  —time series 

of prediction ratios； 

))(ˆ),......,3(ˆ),2(ˆ),1(ˆ( 0000)0(
nwwwwWp  —sequence of 

prediction values. 

Coefficients: 

n — number of time series data; 

wa —  actual wind power; 

X —  ratio of wind power; 

Wp —  predicted wind power. 

Procedure of the HWC code: 

1: Read the historical data; 

2: Evaluate the transformation of the time series data to 

ratios; 

3: Check the ratios from i=1 up to n (i, n) = 0 where i=1=w 

size; 

4: End of this, and start loop of WPP (i, n) = 0 where 

i=1=W size; 

5: Check the prediction winds, and then go through 

correction; 

6: Start for i=1: correction size; 

7: End of that, and calculate the sum of correction must 

be equal to 1, then; 

8: Calculate WPP according to the correction values. 

In view of the uncertainty resulting from wind energy, we 

introduced the method of multiple linear regressions and the 

least square analysis based on the correction process. 

Calculation steps are as follows: preliminary analysis of data 

processing; observation of the change in the behavior of the 

data or graphically shape; comparison of results; reprocessing 

of the abnormal values. Therefore, the historical wind power 

data sequence tends to be stable, as illustrated in Fig.1. 
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Generation unit side

Analysis of the data from 

the generation side 

Using statistical analysis 

for data

Forecasting program 

(ultra-short-term): real-

time grid operation

Comparison results 

to the actual

Accuracy output power

Processing side

Stable

else

 

Fig.1.The process of the diagram on proposal approach. 

2.3. HWoC model 

Multiple linear regressions and least square are used 

without correction strategy as Eq. (4) and (5). In this case, the 

output power of WPP will be determined by historical data, 

directly through hybrid time series model. 

2.4. ARMA model 

The predicted wind power time series {Wt} is modeled 

using the ARMA model as shown in Eq. (8): 

 
 

 
p

i

t

q

j

jtjitit aawW
1 1

                                  (8) 

Where, p is the order of autoregressive parts; q
 
is the order of 

moving average; i is the autoregressive part of the parameters 

model (i=1~p); j is the model parameters of the moving 

average (j=1~q); w is the historical wind power time series; a 

is error terms. 

2.5. ARIMA model 

The ARIMA model is one of the most popular and 

frequently used stochastic time series model in prediction. 

ARIMA model using for non-stationary time series becomes 

stationary values, however, ARIMA model is the general form 

of ARMA model. 

3. Risk evaluation of WPP method with different t 

The power grid integration of renewable resources can 

significantly improve energy security of power systems as 

primary sources are diversified and renewable-energy 

resources are available locally. However, the penetration level 

of renewable energy in the system can bring operational 

security concerns and risks. The challenges can lead to a 

variety of instability and operational security problems, and 

the proposed risk evaluation procedure can be summarized in 

the following. 

3.1. Different evaluation risk of error values 

A- Suppose that )(0 nt in the input data is the current time and 

)(ˆ it in the output is future time instant to be predicted. With 

the measured value of wind power 
)0(

aw as the criterion for 

comparison, the error 
ie of the prediction value 

pŴ before 

using correction strategy is defined as:  

api wWe )0(ˆ 
                                                           (9) 

Wind power is overrated when 
ie  is greater than zero 

while it is underestimated when 
ie  less than zero in different 

time periods. The positive or negative error values have 

different impact on the reliability of the power grid. 

B- Assume )(n as the number of output WPP values within 

range of investigation, and then the error value after using 

correction strategy is E  that consists of every relevant error 

ie  as it appears in the Eq. (10). 

],.....,2,1[ nieE i 
                                           (10)  

The total E  reflects the predictive quality. The above Eq. 

can be extended to wide range statistical results. The 

probability ))(( jj ep  of predict error
je whose probability 

distribution function is )(eP  can be obtained from statistics 

methods. A normal PDF and CDF probabilistic method is 

proposed to coordinate the WPP between predict values and 

risk events with high error's probability. The risk evaluation 

index R  for the wind power is defined as an integration of the 

probability of a power instable status caused by WPP error is 

defined as  

dttetPR )()(  




                                                   (11) 

The application of the risk evaluation index can be 

expanded from the post-evaluation of WPP to selection the 

accurate VSTWPP method using for the wind power 

connected to the power grid. The framework of the risk 

evaluation based VSTWPP method is shown in Fig.2. The 

process evaluation is divided into four parts: first processing 

data and checking the software method; second using 

technical model and simulation values; then arranging output 

of the simulation and finally comparing output results with 

different methods.  

Our aim in the present section is to focus on the wind-

power predictability only. For this purpose, we introduce 

prediction risk evaluation indices that can be used as skill 
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forecasts, the forecasts of the distributions of expected 

prediction wind power values and errors. In the power system 

with wind farm connection, the proposed process computes 

first data initialization, then using technical simulation to 

checked data, and finally comparison results through   

probability distribution.  In this case, the prediction period and 

horizon will have a significant impact on the wind power 

predict error. For T = 60, t = 5-minute scales, wind power 

variation and predict error is smallest and can be seen into the 

following Fig. (3, 5 and 14), it confirms that larger time period 

and horizon up to several hours can lead to higher prediction 

errors due to the higher probability of wind power output 

changes for longer predict horizon. The risk evaluation index 

for wind power prediction is proposed in Fig.2. This index can 

be used for quantitative evaluation of the largest wind power 

prediction error at any confidence level. 

Original power data

Data preprocessing

Software methods

Simulation the system for 

various operation conditions

Wind power state as obtained 

from state estimation

Formulate the pattern feature 

vector for the algorithm steps

Output pattern feature vector 

for the algorithm

Performance of static security 

assessment method 

Output vector pattern of static 

security

Distribution of the output 

values by PDF and CDF

Distribution of the error 

values by PDF and CDF

Start the wind power flow for the 

real time operation

Data 

Processing

Technical and 

simulation

Output 

Layout

Comparison Results  

Fig.2. Process of risk evaluation. 

The power generated from wind power farm depends on 

many factors, such as wind speed, direction, temperature and 

pressure. These factors lead to the generation of random 

fluctuations. It needs accurate methods to predict wind power 

for a different time. This paper proposes a correction method 

in hybrid with multiple linear regressions and least square for 

VSTWPP in Northeast China taking as an example.  

3.2. Comparison of prediction PDF with different t 

The wind-power variability was represented by the 

normal (Gaussian) probability distribution, a PDF of two 

parameters ( &). The parameters were used to correlate the 

Gaussian function with the min average wind power, the 

variance of the wind power and mean density. 

The main purpose of this paper is to calculate the accurate 

wind power in Northeast China: 1) identification of the 

historical records of wind power data (using statistical 

characteristic of wind power); 2) Gaussian probability 

distribution investigated by examining the effect of the 

assumed shape of the wind power value probability 

distribution on the predicted wind power; and 3) calculating 

the wind power density by the proposed method and 

evaluating different methods to find, which has the smallest 

error. 

The data set is comprised of a different length of the 

prediction which will be assigned to 5 and 10 minutes with 

time window being within an hour. The historical records of 

wind power from an offshore region are the input, and the 

target output is total WPP. Correction strategy performance 

was estimated by PDF between the actual and predicted wind 

power values with the different time period. For an 

independent evaluation of the HWC method, the results of the 

verification are presented in Fig.3. The comparison results are 

also shown graphically in Fig.3. 

 

Fig.3. Comparison of PDF of simulated wind power value at 

different t with HWC method. 

 

Fig.4. Comparison of PDF of simulated wind power value at 

different t with HWoC method. 
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According to the hybrid approach with and without 

correction strategy for the above PDF shapes at two different 

sampling intervals of wind power prediction, the prediction 

values of two kinds of methods with different t =5, 10 

minutes and the same T = 60 minutes. The numerical values 

of WPP are shown in Table 1. Fig.3 and 4 show results of 

prediction wind power in distribution by normal PDF. Clearly, 

the two groups of prediction value show the stable result, but 

the first one by proposal method shows more accurate and 

closer to the actual value with different time periods. 

3.3. Comparison of HWoC and HWC errors with different t 

From Table1, the results show that the 5-minutes time 

period of HWC model have the best performance for WPP 

than 10-minutes time period at the same model. Error 

assessment indexes by HWC prediction results decreases 

values with the increasing of the time period, and the 

evaluation risked based index (R), HWC model shows more 

accuracy than HWoC model. 

Table 1. Errors for different methods and time periods 

Time Period 5 minute 10 minute 

Error/Model HWoC HWC HWoC HWC 

RMSE 18.19 5.65 27.41 9.42 

MAPE 2.45 0.69 3.95 1.36 

MSE 3.30 0.32 7.52 0.88 

For more accurate evaluation of the HWC and HWoC 

methods, the following absolute percentage error is used: 

100*
a

pa

W

WW
Error


                                             (12) 

The maximum percentage errors of WPP at T = 60, t =5 

minute are 8.57% for HWoC method and 2.97% for HWC 

method.  

 

Fig.5. Error of WPP for HWoC at (T = 60, t = 5 minute). 

 

Fig.6. Error of WPP for HWC at (T = 60, t = 5 minute). 

Fig.7 illustrate the comparison error of WPP for HWoC 

and HWC at T= 60, t= 5 minute. It is shown that the proposed 

method reduced maximum percentage error comparing with 

another method. 

 

Fig.7.  Comparison error of WPP for HWoC and HWC at 

(T= 60, t= 5 minute). 

4. Simulation and results of WPP 

In this part, simulations are carried out for the VSTWPP 

using a time series with a hybrid approach. The test of WPP 

values includes three parts and divided into two issues: The 

first one is the result comparison, and the second one is the 

result confirmation. 

4.1. WPP values by HWC  with different t 

Fig.8 and 9 respectively are WPP results with the HWC 

at different t. The prediction accuracy in Fig.8 with t= 5 

minute is higher than that in Fig. 9 with t= 10 minute, and its 

overall predict the curve is closer to the actual curve. 

Obviously, the HWC approach can predict the wind-power 

output more accurately than HWoC approach in Fig.10 & 11. 
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Fig.8. Actual and predicted total wind power values by HWC 

at (T = 60, t = 5 minute). 

 

Fig.9. Actual and predicted total wind power values by HWC 

at (T = 60, t = 10 minute). 

4.2. WPP values by HWoC  with different t 

Fig.10 and 11 shows the actual and predicted outputs of 

wind power by HWoC approach at T = 60 and t = 5, 10 

minutes. The shape clearly shows that the performances of the 

HWoC approach are not close to the actual values at different 

t when compared with HWC at the same period.  

 

Fig.10. Actual and predicted total wind power by HWoC at 

(T = 60, t = 5 minute). 

 

Fig.11. Actual and predicted total wind power by HWoC at 

(T = 60, t = 10 minute). 

4.3. Comparison between HWC and HWoC of WPP values, 

PDF, CDF distribution  

Table 2 lists the comparison between actual, predicted 

WPP and error values by HWoC and HWC, which is from one 

hour. The numerical results confirm the accuracy of the 

proposed method. 

Table 2. Comparison between actual, predicted and error 

values with different methods 

Tim

e 

Min 

Without correction Erro

r 

(%) 

With correction Erro

r 

(%) 
Actua

l 

Predic

t 

Actua

l 

Predic

t 

1 616.1

0 

624.8

4 

1.42 616.1

0 

607.5

1 

1.39 

2 619.8

0 

625.8

8 

0.98 619.8

0 

601.3

8 

2.97 

3 618.9

9 

623.4

5 

0.72 618.9

9 

603.2

9 

2.53 

4 609.7

4 

624.2

0 

2.73 609.7

4 

595.6

8 

2.30 

… … … … … … … 

58 525.2

3 

535.1

5 

1.89 525.2

3 

531.2

6 

1.14 

59 519.0

1 

531.4

6 

2.40 519.0

1 

524.7

2 

1.10 

60 504.3

1 

528.3

5 

4.77 504.3

1 

509.5

0 

1.02 

Fig.12 illustrates a comparison between WPP values with 

correction and without correction approach. For better 

comparison, the shape of depicting the WPP by HWoC before 

using correction strategy, and the shape of depicting the WPP 

by HWC after using correction strategy are illustrated. It is 

clear that the proposed approach (HWC) followed the actual 

wind power data better than HWoC approach. Additionally, 

the errors of both approaches are listed in Table 2. The error 

of HWC is smaller than that of HWoC. 

 

Fig.12. Comparison of WPP with and without correction at 

(T = 60, t = 5 minute). 

4.4. Variability of WPP 

It is very important to take the variability of wind power 

value into account in a right way while connected to the power 

grid. Generally, the variability of wind power decreases as 

there are more wind turbines and wind power plants 

distributed over the area. Larger areas of wind power also 

decrease the number of hours of zero output power, in this 

work using eight wind power plants. The variability as well 

decreases as the time period scale decreases; in this paper, we 

used minute scale (t = 5&10 minute) that's why it was 

variability of large-scale wind power is generally small. 

However, the most important variability and uncertainty 
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occurring in the minima time window scales (T = minute up 

to an hour). In case of this work, Fig. 13. shows an example of 

the variability and uncertainty of wind power prediction by 

HWC proposed approach and comparison with HWoC 

method. The contributions of this paper are in two main parts: 

accurate prediction of wind power for the power system grid 

and evaluation of the system security risk with wind power 

predicted errors; this also reduces the variability and 

uncertainty of wind power. 

 

Fig. 13. Example of wind power prediction variability and 

uncertainty with different approach. 

4.5. Comparison of PDF, CDF distribution of WPP error 

The normal distribution describes a special class of the 

distributions that are symmetric and can be described by two 

parameters, which are, the mean () and the standard deviation 

(). 

The probability density function (PDF) of the normal 

distribution is called Gaussian. The PDF is a very common 

continuous distribution in wind power. Normal distributions 

are important to describe the natural and characteristics to 

represent real-valued predicted variables whose distributions 

are not known, using the PDF as shown in Eq. (13) as the 

following: 
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The cumulative distribution function (CDF) returns the 

cumulative probability of WPP error from 0 up to 1 input 

value of predicted variable error.  Technically, it returns the 

percentage of area under a continuous distribution curve from 

large negative values to large positive error values. The below 

formula for the CDF of the standard normal distribution as Eq. 

(14) used in this work:  
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PDFs of the normalized WPP errors for two models are 

shown in Fig. 14. Clearly error distributions, depending on the 

prediction approach are significantly different. Obviously, the 

uncertainty for these various prediction methods must be 

different. As shown, for proposed method (HWC), the 

percentage of WPP errors is concentrated between -17% and 

17% in T = 60, t = 5 minutes, and for HWoC method, the 

larger percentage of WPP errors is concentrated between -48 

and 48. 

 

Fig. 14.  PDFs of WPP error with and without correction at 

(T  = 60, t = 5 minute). 

The Gaussian distribution in Fig.15 represents the WPP 

errors by HWC and HWoC respectively. HWC has more 

pronounced peak and slimmer shoulders than HWoC. It is also 

seen that the distribution of the WPP error by HWoC covers 

for most of the plot. Similar phenomenon can also be seen 

from the CDF distribution and plot in Fig. 15. The distribution 

of HWC mirrors the observed errors very carefully and small 

deviations. On the contrary, the error distribution of HWoC 

has large deviations. 

 

Fig.15.  CDFs of WPP error with and without correction at 

(T = 60, t = 5 minute).  

The numerical results and shapes indicate that in every 

case, the proposed approach is better than the other models, 

i.e., the prediction error is the smallest. 

5. Evaluation indexes  

Three indexes are used to evaluate the hybrid approach 

with correction strategy. These indexes are described as 

follows. 

5.1. The Root Mean Square Error (RMSE)  
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The root means square error value (RMSE) can be used 

for a variety of statistic’s applications. It can be expressed as 

the following: 

mm WpWaError                                                   (15)
 

2
60

1

)(
60

1
m

m

m WpWaRMSE  
                                

(16) 

Where, m is the flowed minutes of the hour, 
mWa  is the 

measured value (actual), and 
mWp  is the predicted value of 

the minutely predict. The smaller RMSE indicates more 

accurate. 

5.2. The mean absolute percentage error (MAPE) 

The mean absolute percentage error (MAPE) can be 

defined as: 

 
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A smaller MAPE indicated that the forecasted values are 

close to the actual values and the method is more accurate. 

5.3. The mean Square error (MSE) 

The mean square error (MSE) can be written as the 

following: 

 



60

1

2

60
1

m

mm WpWaMSE                                  (18) 

MSE is the always non-negative. Values of MSE closer to 

zero are better and perfect accuracy.
 

5.4. Linear correlation coefficient (r) 

The mathematical formulation for computing the linear 

correlation coefficient r is: 
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Where, N is the number of point data, 
iw , w  is the actual and 

means power values, and 
iW  , W  is the predict and means 

power values, r  [-1, 1], means positive and negative linear 

correlations. 

Positive correlation: if actual value 
iw and predicted 

value 
iW have a strong positive linear correlation, r is close to 

+1. Positive values indicate the good prediction method and a 

relationship between actual and predicted variables such as 

values for actual 
iw increases, values for predict 

iW also 

increases. 

Negative correlation: if actual value 
iw and predicted 

value 
iW have a strong negative linear correlation, r is close to 

-1. Negative values indicate that the prediction method not 

accurate and a relationship between actual and predicted 

variables such that as values for actual 
iw increases, values for 

predicted 
iW decreases, and vice versa. 

Table 3. Comparison between errors with different models 

Model 

Errors 

Prediction Models 

HWoC ARMA ARIMA HWC 

RMSE 18.19 18.13 18.03 5.65 

MAPE 2.45 2.47 2.45 0.69 

MSE 3.30 3.29 3.25 0.32 

r  0.78 0.79 0.78 0.98 

Table 3 shows a comparison between the HWC and three 

other approaches (HWoC, ARMA, and ARIMA), regarding 

the RMSE, MAPE, MSE, criterion and linear correlation 

coefficient. The proposed HWC approach presents better 

prediction accuracy with RMSE =5.65. MAPE and MSE of 

HWC are as so less when compared to other methods. The 

correlation coefficient of HWC is higher than those of other 

methods. All indexes show that HWC is the most accurate 

prediction method. 

5.5. General comparison 

A general comparison of four methods (HWoC, ARMA, 

ARIMA and HWC) is carried out for total power prediction. 

Their actual and predicted values and error values are 

computed in Table 4. Prediction is done for one hour. 

Table 4. Comparison between predicted values and errors for 

4 methods 

Tim

e 

Min 

HWo

C 

Predic

t 

Erro

r 

(%) 

ARM

A 

Model 

Erro

r (%) 

ARIM

A 

Model 

Erro

r (%) 

HWC 

Predic

t 

Erro

r 

(%) 

1 624.8 1.4 616.0 0.00

3 

616.0 0.00

1 

607.5 1.3 

2 625.9 0.9 619.1 0.00

5 

619.5 0.00

7 

601.4 2.9 

3 623.5 0.7 618.9 0.00

4 

618.9 0.00

3 

603.3 2.5 

4 624.2 2.7 613.1 0.55

1 

609.7 0.00

7 

595.7 2.3 

… … … … … … … … … 

58 535.2 1.9 540.9 2.99

2 

537.6 2.34

5 

531.3 1.1 

59 531.5 2.4 535.3 3.71

4 

538.6 3.76

8 

524.7 1.1 

60 528.4 4.8 549.5 8.95

7 

549.9 9.04

8 

509.5 1.0 

Table 4 shows the efficiency of the proposed method 

(HWC) and indicates that the proposed method can predict the 

VSTWPP better than other methods. 

6. Conclusions  
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This paper evaluates the impacts of wind power 

prediction by using a hybrid approach with correction strategy. 

By using the historical wind power data, the numerical values 

are determined using 4 methods, and comparison were 

determined using 2 methods with different time periods. 

Performance comparison for the WPP has been done with five 

statistical tools. Risk evaluations based correction strategy for 

VSTWPP framework is detailed in this paper to check 

improved prediction approaches and reflect different 

preferences on WPP methods of a practical operation system. 

The efficacy of the proposed method is verified by 

simulation's results.   

The simulation results show that the HWC is the most 

accurate method for WPP while compared to HWoC, ARMA 

and ARIMA. The HWoC is suggested to provide less accurate 

prediction and is not efficient for the longer time period (t). 

In contrast, the HWC is with less error and is applicable for 

different time periods. Other methods such as ARMA and 

ARIMA are the least accurate methods to fit the numerical 

values in this paper.  

An HWC based power prediction with input historical 

data selected by a hybrid MLR & LS method is able to produce 

a good prediction and constantly with correction values. The 

developed HWC approach improves the prediction, especially 

after using the correction ratios in the input values to predict 

total wind power. This study will be the first step to evaluate 

the high penetration of wind power distribution connected 

with power system impact on the stability system. The future 

study includes determining the impact of the distributed total 

power generation and load providing voltage, and how this 

will impact transmission system and outage. 
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