A New Control Strategy Based on Reference Values Changing for Enhancing LVRT Capability of DFIG in Wind Farm

Zahra Rafiee*, Mansour Rafiee* and Mohammadreza Aghamohammadi*‡

*Faculty of electrical engineering, Shahid Beheshti University, Velenjak, Shahid Shahriari Square, Daneshjou Boulevard, Shahid Chamran Highway, Tehran, Iran, Tel: +98 912 104 1201, Fax: +982177310425
(z.rafiee@sbu.ac.ir, m_rafiee@sbu.ac.ir, m_aghamohammadi@sbu.ac.ir)

‡ Corresponding Author; Mohammadreza Aghamohammadi, Shahid Beheshti University, Shahid Shahriari Square, Daneshjou Boulevard, Shahid Chamran Highway, Tehran, Iran, Tel: +98 912 104 1201, Fax: +982177310425, m_aghamohammadi@sbu.ac.ir

Received: 06.09.2019 Accepted: 12.10.2019

Abstract- Low voltage ride through (LVRT) capability enables a doubly fed induction generator (DFIG) – based wind farm (WF) to remain online supporting the electric grid during fault condition. This paper proposes a control-based strategy for improving LVRT capability of DFIG, in which by changing active and reactive powers reference values following a voltage dip (VD) condition. Moreover, the direct power control (DPC) method is modified to adaptively change the reference values based on the severity of VD. In the proposed modified DPC (MDPC) method, the parameters of the PI controllers are tuned using the imperialist competitive algorithm (ICA). For activating/deactivating the proposed strategy, a voltage dip index (VDI) is proposed which is updated within a moving time window including samples measured by phasor measurement unit (PMU). In order to evaluate root mean square (RMS) value of the voltage from the measured values by PMU, the DFT technique is used. For activating/deactivating the control strategy, two threshold values α and β are defined. In the active mode, the active and reactive power are changed to zero and one p.u, while in the deactivate mode they are changed to one and zero p.u, respectively. Based on the proposed control strategy, during a VD condition, DFIG will be able to smooth the DC-link voltage fluctuations and significantly reduces the oscillations of the stator and rotor currents. The simulation results show the effectiveness of the proposed control strategy for improving LVRT capability of DFIG.

Keywords Doubly fed induction generator (DFIG); low voltage ride through (LVRT); direct power control (DPC); voltage dip, imperialist competitive algorithm.

<table>
<thead>
<tr>
<th>NOMENCLATURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_s)</td>
<td>Stator inductance</td>
</tr>
<tr>
<td>(L_r)</td>
<td>Rotor inductance</td>
</tr>
<tr>
<td>(L_{Lr})</td>
<td>Rotor leakage inductance</td>
</tr>
<tr>
<td>(L_{Ls})</td>
<td>Stator leakage inductance</td>
</tr>
<tr>
<td>(L_m)</td>
<td>Mutual inductance</td>
</tr>
<tr>
<td>(R_s)</td>
<td>Stator resistance</td>
</tr>
<tr>
<td>(R_r)</td>
<td>Rotor resistance</td>
</tr>
<tr>
<td>(i_s)</td>
<td>Stator current vector</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Number of machine paired poles</td>
</tr>
<tr>
<td>(P_s, Q_s)</td>
<td>Stator active and reactive power</td>
</tr>
<tr>
<td>(P_r, Q_r)</td>
<td>Active and reactive power rotor</td>
</tr>
<tr>
<td>(P, Q)</td>
<td>Active and reactive power generator</td>
</tr>
<tr>
<td>(T_m)</td>
<td>Mechanical torque</td>
</tr>
</tbody>
</table>

Synchronous angular speed
Rotor angular speed
Relative speed of rotor respect to stator
Mechanical rotor angular speed

generated code: True
1. Introduction

With the growing use of renewable energy, wind power has gained popularity as a source of electrical energy in many countries, such that the global wind power cumulative capacity reached 591 GW in 2018 [1]. Wind power plants like other power plants can affect voltage, frequency, stability and security of the network. DFIG-based wind turbines (DFIG-WT) are widely utilized for wind farms due to their capability for decoupled control of active and reactive powers, high efficiency, light weight and good speed control [2], [3]. However, DFIG-WT is vulnerable to low voltage conditions. The VD at the point of common coupling (PCC) of DFIG results DC-link over voltage and rotor over current at the beginning and end of the dip period [4]. These phenomenon can damage the electronic devices of the DFIG and cause the WF to trip from the grid due to the lack of LVRT capability [5], [6]. However, tripping of WF is not a suitable strategy. Based on the LVRT requirements, WF must remain connected to the grid during a VD condition [7].

Generally, during a voltage dip, WFs are supposed to contribute to stability improvement and voltage recovery of the network by generating the reactive power. In addition, immediately after VD clearance, WFs must be able to provide active power for maintaining network stability. For enhancing the LVRT capability of the DFIG, various strategies have been proposed which can be classified in three categories: 1) device-based approaches, 2) control-based approaches, and 3) device and control-based approaches. A widely used device for LVRT is the crowbar resistor that is utilized in the rotor circuit causing the rotor side converter (RSC) to be blocked. This strategy is only used for protecting electronic devices during severe VD conditions. By connecting the crowbar resistor, DFIG is converted to squirrel cage induction generator (SCIG) which loses its controllability and absorbs more reactive power from the grid causing more decrease in the PCC voltage [8]. DC-chopper in parallel with the capacitor at the DC-link is another device for protecting DC-link against overvoltage. There are other device-based approaches trying to improve LVRT capability, namely stator dynamic composite fault current limiter in the stator [9], DC-chopper and series dynamic resistors for crowbar resistance [10], energy storage integration in DFIG-based WF [11], dynamic voltage restorer [12]–[15]. However, using device-based strategies need extra hardware devices resulting in cost increase and reliability reduction for DFIG. For these reasons, researchers often adopt control-based approaches to overcome the drawbacks of the device-based approaches.

In addition, control-based approaches for LVRT enhancement such as setting the electrical reference torque of DFIG to zero during VD condition [16], control of RSC by tracking the slotted flux linkage [17], control of RSC by changing the rotor reference current [18], reverse current tracking in which the rotor current is controlled to track stator current reversely by a certain proportion [19], injecting additional feed-forward transient compensation terms into the outputs of the RSC current controller [20], instantaneous power feedback scheme [21], and fuzzy second order integral terminal sliding mode control which has been proposed and used for both RSC and grid side converter (GSC) [22] can only smooth rotor over current and DC-link over voltage oscillations without increasing the voltage at the PCC. For VD conditions, some of these approaches have not discussed the proper strategies for GSC and DC-link voltage in detail. For these reasons, some of the researchers have been proposed device and control based approaches [23].

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{dq-ref}</td>
<td>d & q-axis stator current reference</td>
</tr>
<tr>
<td>l_{g-ref}</td>
<td>Rotor current vector</td>
</tr>
<tr>
<td>i_{rd}, i_{rq}</td>
<td>d & q-axis rotor current</td>
</tr>
<tr>
<td>i_{dref}, i_{qref}</td>
<td>d & q-axis rotor current reference</td>
</tr>
<tr>
<td>l_{r}</td>
<td>Rotor current in the stator reference frame</td>
</tr>
<tr>
<td>i_{p}</td>
<td>Rotor current in the rotor reference frame</td>
</tr>
<tr>
<td>l_{dref}</td>
<td>Rotor current in the rotor reference frame</td>
</tr>
<tr>
<td>l_{dq-ref}</td>
<td>dq-axis rotor current reference</td>
</tr>
<tr>
<td>l_{dqs}</td>
<td>dq-axis stator current</td>
</tr>
<tr>
<td>u_{rd}, u_{rq}</td>
<td>d & q-axis GSC current</td>
</tr>
<tr>
<td>u_{rd}, u_{rq}</td>
<td>d & q-axis rotor voltage</td>
</tr>
<tr>
<td>u_{r}</td>
<td>Rotor voltage in the rotor reference frame</td>
</tr>
<tr>
<td>u_{gds}, u_{gqs}</td>
<td>d & q-axis GSC voltage</td>
</tr>
<tr>
<td>u_{rd}, u_{rq}</td>
<td>d & q-axis rotor flux linkage</td>
</tr>
<tr>
<td>$\lambda_{rd}, \lambda_{rq}$</td>
<td>d & q-axis stator flux linkage</td>
</tr>
<tr>
<td>$\lambda_{rd}, \lambda_{rq}$</td>
<td>d & q-axis rotor flux linkage</td>
</tr>
<tr>
<td>λ_{s}</td>
<td>Stator flux in the stator reference frame</td>
</tr>
<tr>
<td>λ_{s}</td>
<td>Stator flux in the rotor reference frame</td>
</tr>
<tr>
<td>P_r, Q_r</td>
<td>Active and reactive power at the receiving bus.</td>
</tr>
<tr>
<td>U_2, U_1</td>
<td>Bus voltages</td>
</tr>
<tr>
<td>σ</td>
<td>Coupling coefficient</td>
</tr>
<tr>
<td>τ_s</td>
<td>Stator time constant</td>
</tr>
<tr>
<td>s</td>
<td>Slip</td>
</tr>
<tr>
<td>EMF_r</td>
<td>Induced electrical motive force in the rotor</td>
</tr>
<tr>
<td>EMF_s</td>
<td>Induced electrical motive force in the stator</td>
</tr>
<tr>
<td>U_s</td>
<td>Stator voltage magnitude</td>
</tr>
<tr>
<td>$P_{1, 2}$</td>
<td>Active and reactive power at the receiving bus.</td>
</tr>
<tr>
<td>R_{filter}, L_{filter}</td>
<td>Resistance and inductance filter</td>
</tr>
<tr>
<td>ρ_{Line}</td>
<td>Resistance and inductance of transmission line</td>
</tr>
<tr>
<td>U_{rms}</td>
<td>RMS value of the measured stator terminal voltage</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\lambda_{s} &= \text{Stator flux in the stator reference frame} \\
\lambda_{s} &= \text{Stator flux in the rotor reference frame} \\
\end{align*} \]
In this paper, by changing reference values of active and reactive powers and without using any additional device, a new control-based approach is proposed for LVRT enhancement using a MDPC strategy. In this approach, during a VD condition, active and reactive powers reference values are changed. This method suppresses the rotor over current and decreases the DC-link voltage fluctuations and also increases the voltage at the PCC during a VD condition. For this purpose, a VDI calculated by received information from PMUs is proposed, by which reference values of powers can be changed properly. The parameters of the PI controllers of RSC and GSC in MDPC are optimized using the ICA in which the sum of the sample values in the discrete Fourier transform (SMV-MFT) is used for evaluating the objective function. In addition to numerical simulation, an analytical analysis of the transient behaviour of the DFIG during VD condition is carried out. The proposed control approach is validated by using dynamic model of DFIG connected to the grid.

This paper is organized as follows. Section 2 presents the general overview of the proposed strategy. Section 3 discusses about the steady-state model of the DFIG. In Section 4, the transient behaviour of the DFIG is examined during VD event. Section 5 explains the principle of the proposed strategy. The proposed control strategy is introduced in Section 6 in detail. Then, simulation results are presented in Section 7. Finally, some conclusions are reached in Section 8.

2. General overview of the proposed strategy

In this paper, for improving LVRT capability of DFIG against VD conditions, a new technique of the control based strategy is proposed. The proposed control strategy works continuously within a moving time window in which voltage is measured by PMU from which VDI is evaluated for activating the control strategy. The length of the moving time window is 20 ms including 400 samples provided by PMU. The moving time window is updated continuously by one sample. In the proposed approach, following occurrence of a VD at the PCC, active and reactive power reference values are changed causing mitigation of rotor over current, decreasing DC-link voltage fluctuations and increasing voltage at the PCC. In this approach, a modified DPC is used for fast regulation of DFIG output powers. The proposed MDPC method is a hybrid mix of direct power and vector control methods. The DFIG connected to the electric network is equipped with six PI controllers, two controllers for RSC, three for GSC, and one for controlling rotor speed using pitch control. PI controllers’ parameters are optimized with ICA in which PI parameters are tuned by changing active and reactive power reference values at the steady-state and transient behaviour. In order to evaluate the performance of the PI controllers, in steady state condition, by changing active and reactive power reference values using a look-up table, proper simulations of DFIG are carried out. Finally, in order to evaluate the ability of the proposed control approach for enhancing LVRT capability during a VD condition, the performance of the proposed control approach is examined for various VD percentages. All calculations and simulation studies are carried out by MATLAB/Simulink®.

3. DFIG Modelling

In this study, DFIG is modelled by the detailed dynamic model using the following voltage equations specified in the synchronous reference frame [24]:

\[
\begin{align*}
\dot{u}_s &= R_s i_s + d \dot{\lambda}_s / dt + j \omega_L \lambda_s \\
\dot{u}_r &= R_r i_r + d \dot{\lambda}_r / dt + j (\omega_L - \omega_r) \lambda_r
\end{align*}
\]

(1)

So, the flux equations can be shown as:

\[
\begin{align*}
d \dot{\lambda}_s / dt &= u_s - R_s i_s - j \omega_L \lambda_s \\
d \dot{\lambda}_r / dt &= u_r - R_r i_r - j (\omega_L - \omega_r) \lambda_r
\end{align*}
\]

(2)

In order to investigate the behaviour of the DFIG, the flux and current equations of the stator and the rotor have been expressed as:

\[
\begin{align*}
\dot{\lambda}_s &= (L_s \dot{\lambda}_s - L_m \dot{\lambda}_r) / (L_s L_r \sigma_r) \\
\dot{\lambda}_r &= (-L_m \dot{\lambda}_s + L_s \dot{\lambda}_r) / (L_s L_r \sigma_r)
\end{align*}
\]

(3)

By substituting Eq. (36) and Eq. (37) into Eq. (35) the following space state equations can be derived:

\[
\begin{align*}
\dot{\lambda}_s &= u_s - R_s (L_r \dot{\lambda}_r - L_m \dot{\lambda}_r) / (L_s L_r \sigma_r) - j \omega_L \lambda_s \\
\dot{\lambda}_r &= u_r - R_r L_r \lambda_r (-L_m \dot{\lambda}_s + L_s \dot{\lambda}_r) - j (\omega_L - \omega_r) \lambda_r
\end{align*}
\]

(4)

4. The transient behaviours of the DFIG under VD condition

DFIG is highly sensitive to changes in its terminal voltage. Generally, when a disturbance occurs in the network causing a VD at the DFIG terminal, if the necessary actions are not taken, the following problems can arise:

- Stator flux fluctuations
- Increase in the electromotive force in the rotor winding
- Increase in the rotor current
- Increase in the DC link voltage
- Swing in torque and speed

When the voltage at the PCC decreases due to a symmetrical fault in the network, the induced electromotive force in the rotor reference frame \(EMF^r \) is expressed as [25]:

\[
\begin{align*}
EMF^r &= L_m / L_s U_s [s(1 - g)e^{-j(\omega_L - \omega_r) / \tau_e} - \\
&\quad g \left(1 + j \omega_r \right)e^{-j \omega_L e^{-t / \tau_s} / j \omega_k}\right]
\end{align*}
\]

(5)

where \(\tau_s = L_s / R_s \) is the time constant of the stator winding and \(g \) refers to the VD percentage. By neglecting 1/\(\tau_s \), Eq. (5) can be simplified as:

\[
\begin{align*}
EMF^r &= L_m / L_s U_s [s(1 - g)e^{-j(\omega_L - \omega_r) / \tau_e} - \\
&\quad g (1 - g) e^{-j \omega_L e^{-t / \tau_s} / \tau_s}]
\end{align*}
\]

(6)
From Eq. (6), it can be seen that at the initial moments of the fault \(t = 0 \), the induced EMF \(E_{MF}^F(0) \) is relatively large due to the DC offset in the flux. For example, for \(s = -0.2 \) and \(g = 1 \), the value of the EMF \(E_{MF}^F(0) \) becomes \(1.2U_s L_m / L_s \) in the initial moments, which is 6 times the normal value.

5. Principle of the proposed method

In this section, the principle of the proposed control method for enhancing LVRT capability is explained. The enhancement of LVRT capability is based on the mitigation of rotor current and increase of PCC voltage, which are achieved by changing active and reactive power reference values

2.1. Control of the rotor current by active power reference value

Using vector control theory, the stator voltage vector \(u_s \) is orientated with the d-axis grid voltage as shown in Fig. 1, the dq-axis grid voltage will be as follows [26]–[28]:

\[
u_{qs} = 0, \quad u_{ds} = s \sqrt{2} u_s - u_{qs} = u_s
\]

So,

\[i_d = (\lambda_s - L_m i_{dr}) / L_s, \quad i_q = -L_m i_{qr} / L_s
\]

\[P_s = 3\pi u_i q / 2, \quad Q_s = 3\pi u_i d / 2
\]

Substituting Eq (8) into (9), the dq-axis rotor currents can be evaluated as follows:

\[
\begin{align*}
i_{dr} &= -\left(\frac{2L_s}{3\pi u_i d L_m}\right)P_s - \left(\frac{R_s}{\alpha_L L_m}\right)i_{qs} \\
i_{qr} &= \left(\frac{2L_s}{3\pi u_i q L_m}\right)Q_s + \left(\frac{R_s}{\alpha_L L_m}\right)i_{ds} - \left(\frac{1}{\alpha_L L_m}\right)u_{ds}
\end{align*}
\]

where \(P_s \) and \(Q_s \) are active and reactive power R and X, \(U_s \) and \(U_2 \) are active and reactive power reference values, the dq-axis rotor currents can be controlled.

2.2. Control of the PCC voltage by reactive power reference value

Using two-bus system shown in Fig.2, the relationship between voltage \(U_2 \) and reactive power \(Q \) can be derived.

Using corresponding phasor diagram shown in Fig.3, the following equations can be obtained:

\[(U_1 - U_2)^2 = \Delta U^2 = \Delta U_R^2 + \Delta U_X^2 = (RI \cos \phi + XI \sin \phi)^2 + (XI \cos \phi - RI \sin \phi)^2 \]

Neglecting \(\Delta U_X \) compared to \(\Delta U_R \), the active power can be obtained with respect to \(P_2 \) and \(Q_2 \):

\[\Delta U = RI \cos \phi + XI \sin \phi \]

\[\Delta U = RIU_2 \cos \phi + XIU_2 \sin \phi = \frac{P_2 + XQ_2}{U_2} \]

where \(P_2 \) and \(Q_2 \) are active and reactive power R and X, \(U_2 \) and \(U_1 \) are voltage buses, and I is current line. Eq. (12) can be rewritten as follows:

\[U_2 = X (Q_2 + R / X.P_2) / \Delta U \]

Since R< X, the term \(R / X.P_2 \) is smaller than Q2, so it can be concluded that the voltage is mainly dominated by the reactive power. Therefore, during a VD event for increasing the voltage of the PCC, it is sufficient to increase the reactive power reference value.

6. Proposed method

In the previous sections, it is shown that by changing active and reactive power of DFIG, it is possible to control rotor current and PCC voltage. According to this fact, in the proposed control strategy, during a VD event in order to reduce rotor current and increase PCC voltage, active and reactive powers of DFIG should be decreased and increased respectively. In Eq. (15), \(U_2 \) is calculated in terms of X, Q2, and U1. So, Q2 is in terms of U2, X, and U1. Since the capacity of the majority of the DFIG-based WF unit is low and it is about 50 -100 MW special in Iran country [29] and the VD caused the blackout is big about 20% -0%, the DFIG must inject the maximum of its reactive power during VD conditions. Therefore, the active power must decrease to zero.

These changes support network voltage and avoid rotor over current. Figure 4 shows the decision algorithm for activating and deactivating the control strategy when a VD occurs. At each time instant, the measured VRMS is compared with the voltage reference value (1 p.u) from which VDI is calculated. According to the decision algorithm shown in Figure 8, for VDI(t) ≥ α, active and reactive power reference
values are set to 0 and 1 respectively. Once VDI(t) gets smaller than \(\beta \), the reference values are returned to the normal setting.

\[VDI(t) = 1.0 - U_{RMS}(t) \] \hspace{1cm} (16)

Step 2- Using measured URMS, the VD index (VDI) is evaluated for activating/deactivating the proposed control strategy.

Step 3- The VD index (VDI) is compared to the threshold value \(\alpha \) for activating the proposed control strategy.

\[\text{If } VDI(t) > \alpha \rightarrow \text{Active Control Strategy} \]

Step 4- The VDI(t) is compared to the threshold value \(\beta \) for deactivating the proposed control strategy.
If $V DI(t) < \beta \rightarrow \text{Deactive Control Strategy}$

As long as the $V DI(t)$ remains between two threshold values ($\alpha > V DI(t) > \beta$) the control strategy remains active. Figure 6 shows the decision flow for activating/deactivating the proposed control strategy. It is worth noting that choosing proper values for α and β depend on the sensitivity of the voltage magnitude to reactive power compensation which is related to the short circuit capacity of the terminal of DFIG.

7. Simulation results

In order to demonstrate the effectiveness of the proposed control strategy, it is applied on a DFIG connected to the main grid through a transmission line as shown in Fig. 7.

2.3. Optimization of the PI controllers’ parameters

The parameters of the PI controllers are tuned by the ICA, using the following objective function (SMVS-DFT):

$$OF = 25\Delta U_{DC} + 10\Delta P_{d} + 10\Delta Q_{d} + 8\Delta \omega_{r} + 30\Delta i_{dr} + 30\Delta i_{qr}$$

The weighting coefficients of the variables consisting OF have been selected based on the empirical analysis of the variables behaviour with respect to their reference values. The optimized parameters are given in Table 1.

<table>
<thead>
<tr>
<th>Element</th>
<th>Variable control</th>
<th>KP</th>
<th>KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSC</td>
<td>Active power</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>GSC</td>
<td>Reactive power</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>GSC</td>
<td>DC-link voltage</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Rotor</td>
<td>Reactive power</td>
<td>99.155</td>
<td>77.776</td>
</tr>
<tr>
<td>Rotor</td>
<td>speed</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. Parameters of PI controllers.

Fig. 5. The proposed control strategy consisting of decision algorithm and MDPC.
In this scenario, the performance of the proposed control strategy for active power tracking in a normal condition is studied. The active power reference was stepped according to the vector \([0.8, 0.6, 0.2, 0.8, 1]\) p.u at time vector \([0, 1, 2, 3, 4]\) s, while the reactive power is kept constant at 0.065 p.u. Figure 8 shows the simulation results. As it can be seen, the active power has tracked the active power reference vector quickly with a small overshoot. The d-axis stator current has changed proportional to the active power reference vector. Rotor speed has absorbed the additional kinetic energy during change of active power reference which has caused a reverse change in the rotor speed.

Scenario 2-Tracking the reactive power

In this scenario, the performance of the proposed control strategy for reactive power tracking in a normal condition is studied. The reactive power reference was stepped by the vector \([0, 1, 0.5, 0, 0.6]\) p.u at time vector \([0, 1, 2, 3, 4]\) s, while at each step, the corresponding active power reference is calculated using \(\sqrt{1-Q^2}\) as upper limit \((P \leq \sqrt{1-Q^2})\). Figure 9 shows the simulation results. As it can be seen, the reactive power has tracked the reactive power reference vector very well and quickly with a small overshoot. The q-axis stator current has changed proportional to the reference reactive power vector. The DFIG terminal voltage has changed proportional to the reactive power which causes the increase of generator terminal voltage.

In the next three scenarios, the LVRT capability of DFIG during transient period following a three-phase fault at \(t=3s\) with duration of 300ms in the network which causes different VD conditions for DFIG is investigated. Decision block detects the fault after 20ms because discrete Fourier transform is used for phasor measurement. The rotor current limit is 2p.u and DC-link voltage limit is 1.2p.u of rated value [36].

Scenario 3- Transient behavior of DFIG for 20% VD

Figure 10 shows the results of the simulation for the 20% VD in the network. It is worth noting that each figure includes 6 sub-figures which have two identical variables. Because of the shortage of space for sub-figures, the legend, which is identical for all sub-figures, is placed on the upper right corner of only one sub-figure as representative for all sub-figures. In this set of results, the reactive and active powers injected into the network, the rotor speed, the stator current components in the synchronous reference frame, the DC link voltage, and finally the voltage at generator terminal are shown. As it can be seen, reactive and active powers are well suited at the normal conditions to their reference values. When the VD occurs at the generator terminals, the values of the active and reactive power reference values are immediately changed based on the decision strategy after detection of the VD. As a result, active and reactive powers are greatly decreased and increased respectively and stator currents \(i_{dq}\) are also well changed. Due to injection of 2.5 MVAR reactive power to the grid, the terminal voltage is increased by about 0.1 p.u. Also, due to the reduction of active power generation, the stator and rotor currents during the fault are decreased compared to the condition that the power reference has not changed. As it can

2.4. Transient behaviour of DFIG during VD conditions

In order to pursue transient behaviour of the DFIG during a VD condition, the following assumptions are considered:

A. DFIG operates in super-synchronous speed with the potential for generating maximum rotor over current.
B. Wind speed variation is negligible, due to short duration of fault,
C. DFIG is operating at the steady state before VD condition.

In order to validate the effectiveness of the proposed control strategy for both steady state behaviour of DFIG and LVRT capability during transient behaviour of DFIG, five scenarios have been simulated and analyzed. Also, switching frequency and sampling time in PWM are considered 1 kHz and 50 \(\mu\)s, respectively.

Scenario 1-Tracking the active power reference:
be seen in Fig. 10e for 20% VD, the DC link voltage fluctuation is low.

Scenario 4- Transient behavior of DFIG for 40% VD

Figure 11 shows the results of the simulation for the 40% VD in the network. Comparing to scenario 3, no significant difference can be seen in the results and this is because the amount of VD is not much severe. The improvement in terminal voltage is the same as in scenario 3. The generator terminal voltage increased about 0.1 p.u., which is proportional to the network's short circuit level and reactive power injection into the network. DC-link voltage fluctuation is low.

Scenario 5- Transient behavior of DFIG for 60% VD

Figure 12 shows the results of the simulation for the 60% VD in the network. Comparing to the previous scenarios, the improvement achieved by the proposed control strategy is significant. DC-link voltage which is increased up to 1600 V is reduced to 1300 V. Increase in the terminal voltage is the same as the previous scenarios. Also, the stator currents are relatively improved.
Figure 13a) comparatively shows the rotor speed for three scenarios in which following a decrease in active power, rotor speed is increased within its limit by relatively equal amount for three scenarios.

Figure 13b shows the rotor current variation for three scenarios in which for the case of 60% VD the current is increased more than 2 p.u. which is controlled by the proposed approach.

It is worth noting that in the previous control-based methods [37]–[41] only the rotor current and DC link voltage have been improved for enhancing LVRT capability however and the PCC voltage has not been considered for improvement. In this paper, in addition to controlling rotor and stator currents and DC link voltage, the proposed method considers the behavior of PCC voltage and improve it. Comparing the previous works, since all efforts of the controller is employed for rotor and stator currents and DC link voltage, the their performance for these variables is better than the proposed method while their performance for PCC voltage is poor.

Fig. 10. The simulation results for a three-phase fault in the network causing 20% VD.

Fig. 11. The simulation results for a three-phase fault in the network causing 40% VD.
Fig 12. The simulation results for a three-phase fault in the network causing 60% VD.

Fig 13. (a) The rotor speed for three types of VD event, (b) the rotor current (RMS values) for three types of VD event.

8. Conclusion

In this paper, for mitigating the side effects of a severe VD condition and improving LVRT capability of DFIG, a new control-based strategy is proposed in which by changing active and reactive power reference values, DC-link over voltage, rotor over current and terminal voltage can be properly controlled. In the proposed control strategy, the VDI is proposed as a detection index for activating and deactivating the proposed control strategy. In this approach, by using vector control theory, the direct power control method is modified to adaptively change the reference values based on the severity of VD while avoiding rotor current increase. In the proposed MDPC method, the parameters of the PI controllers are tuned using the ICA. The main advantage of the proposed control method is its control-based nature which makes it easy for implementation into the network without need for any additional devices. The simulation results show that for a severe VD condition, the proposed control strategy is able to decrease DC-link voltage and rotor current while increasing terminal voltage. The voltage improvement depends on the fault level of the terminal point and the amount of reactive power which can be injected into the grid by DFIG. For the case of 60% VD condition, the improvement in DC-link voltage and rotor current are relatively good which demonstrates the ability of the proposed control strategy for improving LVRT capability.

Appendix

Table A1. Induction machine parameters.

<table>
<thead>
<tr>
<th>Rated power DFIG</th>
<th>2.5 MW</th>
<th>Rotor voltage</th>
<th>1975 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator voltage</td>
<td>690 V</td>
<td>Rotor rated current</td>
<td>731 A</td>
</tr>
<tr>
<td>Stator rated current</td>
<td>2092 A</td>
<td>Rotor leakage inductance ind.</td>
<td>0.1 p.u.</td>
</tr>
<tr>
<td>Magnetization inductance generator</td>
<td>5 p.u.</td>
<td>Rotor resistance</td>
<td>0.02 p.u.</td>
</tr>
<tr>
<td>Stator leakage inductance</td>
<td>0.1p.u.</td>
<td>Number of pair of poles</td>
<td>3</td>
</tr>
</tbody>
</table>
Table A2. Line and grid parameters.

<table>
<thead>
<tr>
<th>Grid</th>
<th>High voltage transformer</th>
<th>Line</th>
<th>Medium voltage transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>S = 500MVA, Vc = 120kV, R = 0.1 p.u., X = 1.0 p.u.</td>
<td>P = 47 MW, Vc = 120kV, R = 0.08/30 ohm/km, X = 0.05e-3 ohm/km, Line length = 10 km.</td>
<td>P = 3 MW, Vc = 25kV, R = 0.025/30 p.u., X = 0.025 p.u.</td>
<td></td>
</tr>
</tbody>
</table>

References

[19] Huang Qingjun, Sun Mucun, Zou Xudong, Tong Li, Xiong Wei, and Chen Jianqing, “A reverse current tracking based LVTR strategy for doubly fed induction generator (DFIG),” in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society,

