Optimizing Photovoltaic Efficiency of a Dye-Sensitized Solar Cell (DSSC) by a Combined (Modelling-Simulation and Experimental) Study

Deepak Kumar, Kanak Pal Singh Parmar, Piyush Kuchhal

Abstract


A comparative investigation involving experimental and modelling-simulation is carried out to maximize the photovoltaic conversion efficiency (η) of a DSSC device assembled using N719 dye, an iodide redox liquid electrolyte and TiO2 electrode. The measured current density-voltage (J-V) characteristics under 1 sun condition of a pre-assembled DSSC is simulated in a tiberCAD based microscopic model (TCMM) along with single-diode based macroscopic model (SDMM). The calibrated model parameters are then utilized for predicting a maximum η of a DSSC belonging to an unknown electrode’s thickness (L). The microscopic simulations provided a good qualitative nature of J V characteristics curves for different L and η values. A complete and best J-V curve fitting is achieved using a TCMM by incorporating an unaccounted series resistance of a FTO substrate. Particularly, model simulated J-V characteristics matches perfectly well to experimental results of a post-assembled DSSC device (η~5.46 %; L~12.0 µm) with a tolerable error (<0.1%).

Keywords


efficiency; optimization; tiberCAD; P-25; Modelling; Simulations, Dye solar cell; MATLAB; diode model; Lambert W-function

Full Text:

PDF

References


. Jäger-Waldau A. European photovoltaics in world wide comparison. J Non-Cryst Solids 2006;352:1922–7. doi.org/10.1016/j.jnoncrysol.2005.10.074

. Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sustain Energy Rev 2011;15:1625–36. doi.org/10.1016/j.rser.2010.11.032

. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM. Solar photovoltaic electricity: current status and future prospects. Sol Energy 2011;85:1580–608. doi.org/10.1016/j.solener.2010.12.002

. Di Francia G. The effect of technological innovations on the cost of the photovoltaic electricity. In2015 International Conference on Renewable Energy Research and Applications (ICRERA) 2015 Nov 22 (pp. 542-546). IEEE.

. Sun Y, Yan X, Yuan C, Luo H, Jiang Q. The I–V characteristics of solar cell under the marine environment: Experimental research. In2015 International Conference on Renewable Energy Research and Applications (ICRERA) 2015 Nov 22 (pp. 403-407). IEEE.

. Cakmak BY. Solar energy potential of Konya and architectural design criterias for solar energy efficiency. In2015 International Conference on Renewable Energy Research and Applications (ICRERA) 2015 Nov 22 (pp. 1463-1469). IEEE.

. Lacerda JS, Van Den Bergh JCJM. Diversity in solar photovoltaic energy: implications for innovation and policy. Renew Sustain Energy Rev 2016;54:331–40. doi.org/10.1016/j.rser.2015.10.032

. Gangopadhyay U, Jana S, Das S. State of Art of Solar Photovoltaic Technology. In: Proceedings of International Conference on Solar Energy Photovoltaics; 2013. doi.org/10.1155/2013/764132

. Busacca A, Cardona F, Caruso M, Cellura M, Cino A, Miceli R, Parisi A, Pernice R, Galluzzo FR, Viola F. Electrical characterization of low power CIGSSe photovoltaic modules. In2015 International Conference on Renewable Energy Research and Applications (ICRERA) 2015 Nov 22 (pp. 1597-1602). IEEE.

. Goetzberger A, Luther J, Willeke G. Solar cells: past, present, future. Sol Energy Mater Sol Cells 2002;74:1–11 doi.org/10.1016/S0927-0248(02)00042-9

. Que L., Lan Z., Wu W., Wu J., Lin J., Huang M., “High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowiresâ€. J Power Sources 2014;266:440–7. doi.org/10.1016/j.jpowsour.2014.05.022

. Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochim Acta Part A: Mol Biomol Spectrosc 2014;132:232–8. doi.org/10.1016/j.saa.2014.04.164

. Saha S, Das P, Chakraborty AK, Sarkar S, Debbarma R. Fabrication of DSSC with nanoporous TiO2 film and Kenaf Hibiscus dye as sensitizer. International Journal of Renewable Energy Research (IJRER). 2016 Jun 18;6(2):620-7.

. Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells. 1996 Oct 30;44(1):99-117. doi.org/10.1016/0927-0248(96)00063-3

. Smestad G, Bignozzi C, Argazzi R. Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Solar energy materials and solar cells. 1994 Mar 1;32(3):259-72. doi.org/10.1016/0927-0248(94)90263-1

. Chou CS, Hsiung CM, Wang CP, Yang RY, Guo MG. Preparation of a counter electrode with P-type NiO and its applications in dye-sensitized solar cell. International Journal of Photoenergy. 2010;2010. dx.doi.org/10.1155/2010/902385

. Gong J, Sumathy K, Zhou Z, Qiao Q. Modeling of interfacial and bulk charge transfer in dye-sensitized solar cells. Cogent Engineering. 2017 Jan 1;4(1):1287231. dx.doi.org/10.1080/23311916.2017.1287231

. Thavasi VR, Renugopalakrishnan V, Jose R, Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering: R: Reports. 2009 Jan 29;63(3):81-99. doi.org/10.1016/j.mser.2008.09.001

. Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry. 2004 Jun 1;164(1-3):3-14. doi.org/10.1016/j.jphotochem.2004.02.023

. Tripathi B, Yadav P, Kumar M. Charge transfer and recombination kinetics in dye-sensitized solar cell using static and dynamic electrical characterization techniques. Solar Energy. 2014 Oct 1;108:107-16. doi.org/10.1016/j.solener.2014.06.037

. Onodera M, Ogiya K, Suzuki A, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Miyamoto A. Modeling of dye-sensitized solar cells based on TiO2 electrode structure model. Japanese Journal of Applied Physics. 2010 Apr 20;49(4S):04DP10. dx.doi.org/10.1143/JJAP.49.04DP10TI

. Ni M, Leung MK, Leung DY. Theoretical modelling of the electrode thickness effect on maximum power point of dyeâ€sensitized solar cell. The Canadian Journal of Chemical Engineering. 2008 Feb;86(1):35-42. doi.org/10.1002/cjce.20015

. Supriyanto E, Kartikasari HA, Alviati N, Wiranto G. Simulation of Dye-Sensitized Solar Cells (DSSC) Performance for Various Local Natural Dye Photosensitizers. InIOP Conference Series: Materials Science and Engineering 2019 Apr (Vol. 515, No. 1, p. 012048). IOP Publishing. doi:10.1088/1757-899X/515/1/012048

. Jain A, Kapoor A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Solar Energy Materials and Solar Cells. 2004 Feb 6;81(2):269-77. doi.org/10.1016/j.solmat.2003.11.018

. Parmar KP, Ramasamy E, Lee J, Lee JS. Rapid (∼ 10 min) synthesis of single-crystalline, nanorice TiO2 mesoparticles with a high photovoltaic efficiency of above 8%. Chemical Communications. 2011;47(30):8572-4. Doi.org/10.1039/C1CC12150B

. Gagliardi, A., Auf der Maur, M., Pecchia, A., & Di Carlo, A. (2009). Dye Solar Cell Simulations Using Finite Element Method. 2009. 13th International Workshop on Computational Electronics. DOI:10.1109/iwce.2009.5091107

. Rudra S, Sarker S, Kim DM. Review on simulation of current–voltage characteristics of dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry. 2019 Aug 20. doi.org/10.1016/j.jiec.2019.08.030

. Penny M, Farrell T, Please C. A mathematical model for interfacial charge transfer at the semiconductor–dye–electrolyte interface of a dye-sensitised solar cell. Solar Energy Materials and Solar Cells. 2008 Jan 1;92(1):11-23. doi.org/10.1016/j.solmat.2007.07.013

. Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS. A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A. 2014;2(13):4474-90. DOI: 10.1039/c3ta13374e

.Grätzel M. Dye-sensitized solar cells. Journal of photochemistry and photobiology C: Photochemistry Reviews. 2003 Oct 31;4(2):145-53. doi.org/10.1016/S1389-5567(03)00026-1

. Oda T, Tanaka S, Hayase S. Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model. Solar energy materials and solar cells. 2006 Oct 16;90(16):2696-709. doi.org/10.1016/j.solmat.2005.11.013

. Ferber J, Stangl R, Luther J. An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells. 1998 May 12;53(1-2):29-54. doi.org/10.1016/S0927-0248(98)00005-1

. Diantoro M, Suprayogi T, Hidayat A, Taufiq A, Fuad A, Suryana R. Shockley’s Equation Fit Analyses for Solar Cell Parameters from IV Curves. International Journal of Photoenergy. 2018;2018. 2018.doi.org/10.1155/2018/9214820

Ahmed MT, Gonçalves T, Tlemcani M. Single diode model parameters analysis of photovoltaic cell. In2016 International Conference on Renewable Energy Research and Applications (ICRERA) 2016 Nov 20 (pp. 396-400). IEEE.

. Ghani F, Duke M. Numerical determination of parasitic resistances of a solar cell using the Lambert W-function. Solar Energy. 2011 Sep 1;85(9):2386-94. doi.org/10.1016/j.solener.2011.07.001

. Tsai JK, Hsu WD, Wu TC, Meen TH, Chong WJ. Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale research letters. 2013 Dec;8(1):459. doi.org/10.1186/1556-276X-8-459

. Kao MC, Chen HZ, Young SL, Kung CY, Lin CC. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin Solid Films. 2009 Jul 1;517(17):5096-9. doi.org/10.1016/j.tsf.2009.03.102

. Balraju P, Suresh P, Kumar M, Roy MS, Sharma GD. Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye. Journal of Photochemistry and photobiology A: Chemistry. 2009 Jul 5;206(1):53-63. doi.org/10.1016/j.jphotochem.2009.05.014

. Miyasaka T, Kijitori Y, Murakami TN, Kimura M, Uegusa S. Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers. Chemistry Letters. 2002 Dec 5;31(12):1250-1. doi.org/10.1246/cl.2002.1250

. Gómez R, Salvador P. Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model. Solar Energy Materials and Solar Cells. 2005 Sep 15;88(4):377-88. doi.org/10.1016/j.solmat.2004.11.008

. Zhao W, Bala H, Chen J, Zhao Y, Sun G, Cao J, Zhang Z. Thickness-dependent electron transport performance of mesoporous TiO2 thin film for dye-sensitized solar cells. Electrochimica Acta. 2013 Dec 30;114:318-24. doi.org/10.1016/j.electacta.2013.09.165

. Park KH, Kim TY, Kim JH, Kim HJ, Hong CK, Lee JW. Adsorption and electrochemical properties of photoelectrodes depending on TiO2 film thickness for dye-sensitized solar cells. Journal of Electroanalytical Chemistry. 2013 Nov 1;708:39-45. doi.org/10.1016/j.jelechem.2013.09.014

. Docampo P, Guldin S, Steiner U, Snaith HJ. Charge transport limitations in self-assembled TiO2 photoanodes for dye-sensitized solar cells. The journal of physical chemistry letters. 2013 Feb 12;4(5):698-703. doi.org/10.1021/jz400084n

. Oktiawati UY, Mohamed NM, Burhanudin ZA. Simulation on the performance of dye solar cell incorporated with TiO2 passivation layer. International Journal of Photoenergy. 2016;2016. dx.doi.org/10.1155/2016/8507625

. Kumari JM, Sanjeevadharshini N, Dissanayake MA, Senadeera GK, Thotawatthage CA. The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon Journal of Science. 2016 Jun 22;45(1).dx.doi.org/10.4038/cjs.v45i1




DOI (PDF): https://doi.org/10.20508/ijrer.v10i1.10309.g7861

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4