Structural and Optical Properties of RF-Sputtered CdTe Thin Films Grown on CdS:O/CdS Bilayers

Nipu Kumar Das, S. F. U. Farhad, J. Chakaraborty, A. K. S. Gupta, M. Dey, M. Al-Mamun, M. A. Matin, N. Amin

Abstract


In this work, we report the structural and optical properties of CdTe thin films on oxygenated Cadmium Sulfide (CdS:O)/Cadmium sulfide(CdS) bilayer using RF magnetron sputtering for different substrate temperatures ( 150, 200, 250, 300 and 350 °C) in Argon ambient. The XRD spectra reveal the polycrystalline nature of all the CdTe thin films with preferential cubic orientation along (111) direction. Raman Spectra show a dominant peak at 163.5 cm-1 and its overtone at 328.7 cm-1 which corresponded to the longitudinal optical (LO) phonon of CdTe. The SEM microscopy exhibits the uniform growth of CdTe films onto the entire glass substrate. The optical transmission of the CdTe films begin at the edge of 800 nm wavelength and showed interference fringe in the transmission spectra. The thickness of the deposited films and the optical constants were calculated from the fringe pattern. The thicknesses of the CdTe films are found to be increasing from 2.34 μm to 2.82 μm with increasing the substrate temperature i.e. from 150 to 250°C. Thereafter, the CdTe film thickness decreased to 2.24 μm while the temperature increased further up to 350°C. The optical bandgap of the deposited CdTe films follows an increasing trend of 1.46 eV to 152 eV with the increase of substrate temperature 150 to 250°C after that the bandgap decrease to 1.50 for 350°C. Hence the obtained structural and optical properties suggest that the deposited CdTe films can be used as a suitable absorber layer for the thin film-based solar cells.

Keywords


CdTe; thin film; RF sputtering; substrate temperature; optical constants; crystallite size.

Full Text:

PDF

References


Cadmium Telluride Solar Cells, https://www.nrel.gov/pv/cadmium-telluride-solar-cells.html

Z. Fang, X. C. Wang, H. C. Wu, and C. Z. Zhao, “Achievements and challenges of CdS/CdTe solar cells,†Int. J. Photoenergy, vol. 2011, no. 1, 2011

Y. Hishikawa et al., “Solar cell efficiency tables ( Version 53 ),†vol. 2, no. November 2018, pp. 3–12, 2019.

A. Kowsar et al., “Progress in major thin-film solar cells: Growth technologies, layer materials and efficiencies,†Int. J. Renew. Energy Res., vol. 9, no. 2, pp. 579–597, 2019

K. Lynn, T. Ablekim, and S. Swain, “Solar cells based on cadmium telluride with an open-circuit voltage greater than 1V,†SPIE Newsroom, pp. 1–2, 2016

F. Anwar, S. Afrin, S. S. Satter, R. Mahbub, and S. M. Ullah, “Simulation and performance study of nanowire CdS/CdTe solar cell,†Int. J. Renew. Energy Res., vol. 7, no. 2, pp. 885–893, 2017

JefPoortmans, Vladimir ArkhipovThin Film Solar Cells Fabrication, Characterization and Applications, “

A. Romeo, "McEvoy's Handbook of Photovoltaics: Fundamentals and Applications, CdTe solar cells," Elsevier Ltd, 2017.

S. Kasap and P. Capper, Electronic and Photonic Materials ( EPM ). 2010

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering. 2011.

S. G. Kumar and K. S. R. K. Rao, “Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects,†Energy Environ. Sci., vol. 7, no. 1, pp. 45–102, 2014.

J. Sites and J. Pan, “Strategies to increase CdTe solar-cell voltage,†Thin Solid Films, vol. 515, no. 15 SPEC. ISS., pp. 6099–6102, 2007.

R. M. Geisthardt, M. TopiÄ, and J. R. Sites, “Status and Potential of CdTe Solar-Cell Efficiency,†IEEE J. Photovoltaics, vol. 5, no. 4, pp. 1217–1221, 2015.

T. Ablekim et al., “Self-compensation in arsenic doping of CdTe,†Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017.

J. M. Burst et al., “CdTe solar cells with open-circuit voltage breaking the 1V barrier,†Nat. Energy, vol. 1, no. 4, 2016.

J. N. Duenow et al., “Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime,†IEEE J. Photovoltaics, vol. 6, no. 6, pp. 1641–1644, 2016

S. Deivanayaki, P. Jayamurugan, R. Mariappan, V. Ponnuswamy, “Optical and structural characterization of CdTe thin films by chemical bath deposition technique,†Chalcogenide Lett. 2010, 7, 159–163

N. K. Das, S. A. Razi, K. S. Rahman, M. A. Matin, and N. Amin, “Electrical Properties of CSS Deposited CdTe Thin Films for Solar Cell Applications,†1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT-2019), 2019

N. A. Khan et al., “Effect of laser annealing on thermally evaporated CdTe thin films for photovoltaic absorber application,†Sol. Energy, vol. 173, no. June, pp. 1051–1057, 2018.

MaitryDey, N. K. Das, M. A. Matin, “Effect of Thermally Evaporated n-CdTe Thin Film on Homojunction CdTe Solar Cell,†5th International Conference on Advances in Electrical Engineering (ICAEE-2019), 2019.

A. Gupta and A. D. Compaan, “All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO: Al transparent conducting oxide,†Appl. Phys. Lett., vol. 85, no. 4, pp. 684–686, 2004

S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke,

M.G. Takwale, K.C. Mohite,“Spray pyrolysis deposition of p-CdTe films: Structural, optical and electrical properties,†Sol. Energy, vol. 106, pp. 56–62, 2014

T. Wang et al., “Control of Cu doping and CdTe/Te interface modification for CdTe solar cells,†Mater. Sci. Semicond. Process., vol. 72, no. September, pp. 46–51, 2017.

I. M. Dharmadasa et al., “Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl 2,†J. Mater. Sci. Mater. Electron., vol. 28, no. 3, pp. 2343–2352, 2017.

Daniel Ash Lamb, Stuart James C. Irvine, Andrew James Clayton, Giray Kartopu, Vincent Barrioz, Simon David Hodgson, Mark A. Baker, Rossana Grilli, James Hall, Craig I. Underwood, and Richard Kimber, “Characterization of MOCVD Thin-Film CdTe Photovoltaics on Space-Qualified Cover Glass,†IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 6, NO. 2, MARCH 2016.

Y. Gu, H. J. Zheng, X. R. Chen, J. M. Li, T. X. Nie, and X. F. Kou, “Influence of Surface Structures on Quality of CdTe(100) Thin Films Grown on GaAs(100) Substrates,†Chinese Phys. Lett., vol. 35, no. 8, pp. 6–9, 2018.

A. D. Compaan and J. R. Sites and R. W. Birkmire and C. S. Ferekides and A. L. Fahrenbruch, “Critical Issues and Research Needs for CdTe-Based Solar Cells,†Electrochemical Society Symposium Proceedings, pp. 241—251, 1999.

Martín-Tovar, E.A.; Castro-Rodríguez, R.; Iribarren, A. Isoelectronic CdTe-doped ZnO thin films grown by

PLD. Mater. Lett. 2015, 139, 352–354.

P. M. Kaminski et al., “Internal strain analysis of CdTe thin films deposited by pulsed DC magnetron sputtering,†2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 2015, 2015.

R. Kulkarni et al., “Substrate temperature dependent structural, optical, morphology and electrical properties of RF sputtered CdTe thin films for solar cell application,†J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12405–12411, 2016

R. R. Kulkarni et al., “Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure,†AIP Conf. Proc., vol. 1724, 2016.

Z. Ghorannevis, E. Akbarnejad, and M. Ghoranneviss, “Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering,†J. Theor. Appl. Phys., vol. 10, no. 3, pp. 225–231, 2016.

N. E. Gorji, “Electrical and optical characterization of R.F.-sputtered CdTe thin films,†IEEE Trans. Device Mater. Reliab., vol. 14, no. 4, pp. 983–988, 2014.

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,†Sol. Energy, vol. 77, no. 6, pp. 803–814, 2004.

N. R. Paudel, J. D. Poplawsky, K. L. Moore, and Y. Yan, “Current Enhancement of CdTe-Based Solar Cells,†IEEE J. Photovoltaics, vol. 5, no. 5, pp. 1492–1496, 2015

N. K. Das, J. Chakrabartty, S. F. U. Farhad, M. A. Matin, and N. Amin, “Effect of growth temperature on the structural and optical properties of CdS:O thin films for CdTe solar cells,†4th EICT-2019, December 2019, Bangladesh.

N. K. Das, S. A. Razi, K. S. Rahman, M. A. Matin, and N. Amin, “Electrical Properties of CSS Deposited CdTe Thin Films for Solar Cell Applications,†in 1st ICASERT-2019, September 2019, Bangladesh.

M. A. Islam, M. S. Hossain, M. M. Aliyu, P. Chelvanathan, and Q. Huda, “Comparison of Structural and Optical Properties of CdS Thin Films Grown by CSVT , CBD and Sputtering Techniques,†Energy Procedia, vol. 33, pp. 203–213, 2013

J C Manifacier, J Gasiot and J P Fillard, “ A simple method for the determination of the optical constants n, k and the thickness of aweakly absorbing thin film,†J. Phys. E: Sci. Instrum, 1976.

S. Chander and M. S. Dhaka, “Thermal evolution of physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cells,†J. Mater. Sci. Mater. Electron., vol. 27, no. 11, pp. 11961–11973, 2016.

K. S. Rahman et al., “Influence of deposition time in CdTe thin film properties grown by Close-Spaced Sublimation (CSS) for photovoltaic application,†Results Phys., vol. 14, no. May, p. 102371, 2019.

D. Bonnet and P. Meyers, “Cadmium-telluride - Material for thin film solar cells,†J. Mater. Res., vol. 13, no. 10, pp. 2740–2753, 1998.

N. R. Paudel, K. A. Wieland, and A. D. Compaan, “Ultrathin CdS/CdTe solar cells by sputtering,†Sol. Energy Mater. Sol. Cells, vol. 105, pp. 109–112, 2012.

http://www.reading.ac.uk/ir-substrateopticaltheory-absorptionandextinctioncoefficienttheory.aspx

G. Morell et al., “Raman spectroscopy of oxygenated amorphous CdTe films,†J. Raman Spectrosc., vol. 25, no. 3, pp. 203–207, 1994.

F. De Moure-Flores et al., “CdTe thin films grown by pulsed laser deposition using powder as target: Effect of substrate temperature,†J. Cryst. Growth, vol. 386, no. May 2018, pp. 27–31, 2014

J. Rangel-Cárdenas and H. Sobral, “Optical absorption enhancement in CdTe thin films by microstructuration of the silicon substrate,†Materials (Basel)., vol. 10, no. 6, 2017.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i1.10431.g7918

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4