An Extensive Review on Fault Detection and Fault-tolerant Control of Multilevel Inverter with Applications

Siva Priya A, KALAIARASI Nallathambi

Abstract


Multi-level inverters (MLI’s) breakthrough in the current industrial market for various high power and high voltage applications mold the energy needs with renewable energy resources. Despite MLI’s numerous advantages, their function is limited owing to heat and electrical stresses in power electronic components. In this study, a detailed state-of-the-art assessment of fault detection (FD) and fault tolerant control (FTC) systems is presented, along with the most recent developments and applications to assure the reliability of the multilevel inverter. A quick and accurate fault detection method necessitates a reliable and robust operation. This review systematically evaluates the various faults and investigates the challenges associated with the switching scheme and harmonic control techniques for multilevel inverters. Further, this study envisioned the numerous fault detection methods available for MLI systems and addresses all the major types of faults and compare the several soft computing techniques with an emphasis on its diagnostic accuracy. Also, a comprehensive analysis of the different types of FTC methods based on the additional component requirement, challenges, and solutions are elaborated. The final part of this paper discusses the prospective future trends and research scopes on detecting and mitigating faults to enhance the reliability of the multilevel inverters.

 


Full Text:

PDF

References


C. S. Lai, Y. Jia, L. L. Lai, Z. Xu, M. D. McCulloch, and K. P. Wong, “A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage,” Renew. Sustain. Energy Rev., vol. 78, no. May, pp. 439–451, 2017, doi: 10.1016/j.rser.2017.04.078.

R. Dogga and M. K. Pathak, “Recent trends in solar PV inverter topologies,” Sol. Energy, vol. 183, no. April 2018, pp. 57–73, 2019, doi: 10.1016/j.solener.2019.02.065.

“India on track to achieve 175 GW of renewable energy by 2022: Govt,” 2019. https://energy.economictimes.indiatimes.com/news/renewable/india-on-track-to-achieve-175-gw-of-renewable-energy-by-2022-govt/71615089 (accessed Oct. 08, 2021).

P. Kala and S. Arora, “A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications,” Renew. Sustain. Energy Rev., vol. 76, no. December 2016, pp. 905–931, 2017, doi: 10.1016/j.rser.2017.02.008.

M. Pamujula, A. Ohja, R. D. Kulkarni, and P. Swarnkar, “Cascaded ‘H’ bridge based multilevel inverter topologies: A review,” 2020 Int. Conf. Emerg. Technol. INCET 2020, pp. 1–7, 2020, doi: 10.1109/INCET49848.2020.9154031.

J. Rodríguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, 2002, doi: 10.1109/TIE.2002.801052.

A. Perra, “A New Neutral-Point-Clamped PWM Inverter AKIRA,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 4, pp. 20–22, 1992, doi: 10.1109/62.143194.

L. He and C. Cheng, “A Flying-Capacitor-Clamped Five-Level Inverter Based on Bridge Modular Switched-Capacitor Topology,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7814–7822, 2016, doi: 10.1109/TIE.2016.2607155.

A. Prayag and S. Bodkhe, “A comparative analysis of classical three phase multilevel (five level) inverter topologies,” 1st IEEE Int. Conf. Power Electron. Intell. Control Energy Syst. ICPEICES 2016, pp. 1–5, 2017, doi: 10.1109/ICPEICES.2016.7853567.

E. Babaei, “A cascade multilevel converter topology with reduced number of switches,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2657–2664, 2008, doi: 10.1109/TPEL.2008.2005192.

E. Babaei and S. H. Hosseini, “New cascaded multilevel inverter topology with minimum number of switches,” Energy Convers. Manag., vol. 50, no. 11, pp. 2761–2767, 2009, doi: 10.1016/j.enconman.2009.06.032.

P. O. , Kumar jagadish, Balawinder dingh surjan, “A review on multilevel inverter with reduced switch count,” IEEE Access, vol. 8, pp. 22281–22302, doi: 10.1109/ICA-ACCA.2020.7778467.

U. M. Choi, F. Blaabjerg, and K. B. Lee, “Study and handling methods of power IGBT Module failures in power electronic converter systems,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2517–2533, 2015, doi: 10.1109/TPEL.2014.2373390.

K. B, Senbakaraj, Periyasamy, and Poongkabilan, “THD Reduction in Multi Level Inverters based on Multicarrier Pulse Width Modulation Technique,” Int. J. Eng. Adv. Technol., vol. 9, no. 4, pp. 1970–1977, 2020, doi: 10.35940/ijeat.d8994.049420.

V. Anand and V. Singh, “Performance analysis of novel fault-tolerant multilevel inverter with a pristine methodology for fast and exhaustive real-time failure of switches,” Int. J. Circuit Theory Appl., no. February, pp. 1–24, 2021, doi: 10.1002/cta.3073.

S. B. Cosmin Danut BOCANIALA1, José Sá da COSTA2, “On the Applicability Of State-of-the-art Fault Diagnosis Methodologies to Simple and Complex Systems,” Control, pp. 33–38, 2005.

J. Xu, B. Song, J. Zhang, and L. Xu, “A new approach to fault diagnosis of multilevel inverter,” Proc. 30th Chinese Control Decis. Conf. CCDC 2018, pp. 1054–1058, 2018, doi: 10.1109/CCDC.2018.8407285.

L. M. Halabi, I. M. M. Alsofyani, and K. B. Lee, “Multi Open/Short Circuit Fault-Tolerance using Modified SVM Technique for Three-Level HANPC Converters,” IEEE Trans. Power Electron., vol. 8993, no. c, 2021, doi: 10.1109/TPEL.2021.3086445.

N. Soni, V. B. Borghate, S. K. Maddugari, D. Ambhore, and S. Sabyasachi, “A Simple Fault Tolerant Multilevel Inverter Topology,” Ieee, pp. 2–7, 2018.

Y. Shaoyong, X. Dawei, B. Angus, M. Philip, R. Li, and T. Peter, “Condition Monitoring for Device Reliability in Power Electronic Converters: A Review,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2734–2752, 2010.

F. W. Fuchs, “Some Diagnosis Methods for Voltage Source Inverters In Variable Speed Drives with Induction Machines A Survey,” IECON Proc. (Industrial Electron. Conf., vol. 2, pp. 1378–1385, 2003, doi: 10.1109/IECON.2003.1280259.

I. Region, “Open Circuit Fault Detection in Neutral Point Clamped Inverter-A Voltage Model Based Analysis,” IEEE Reg. 10 Symp., no. June, pp. 5–7, 2020.

J. Nicolas-Apruzzese, S. Busquets-Monge, J. Bordonau, S. Alepuz, and A. Calle-Prado, “Analysis of the fault-tolerance capacity of the multilevel active-clamped converter,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4773–4783, 2013, doi: 10.1109/TIE.2012.2222856.

F. Richardeau, P. Baudesson, and T. A. Meynard, “Failures-tolerance and remedial strategies of a PWM multicell inverter,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 905–912, 2002, doi: 10.1109/TPEL.2002.805588.

N. Soni, V. B. Borghate, S. Kumar Maddugari, D. Ambhore, and S. Sabyasachi, “A Simple Fault Tolerant Multilevel Inverter Topology,” India Int. Conf. Power Electron. IICPE, vol. 2018-Decem, pp. 2–7, 2018, doi: 10.1109/IICPE.2018.8709448.

V. Naumanen, J. Korhonen, J. Luukko, and P. Silventoinen, “Multilevel inverter modulation method to reduce common-mode voltage and overvoltage at the motor terminals,” 2010 IEEE 26th Conv. Electr. Electron. Eng. Isr. IEEEI 2010, pp. 296–300, 2010, doi: 10.1109/EEEI.2010.5662221.

Q. Yang, J. Qin, and M. Saeedifard, “Analysis, Detection, and Location of Open-Switch Submodule Failures in a Modular Multilevel Converter,” IEEE Trans. Power Deliv., vol. 31, no. 1, pp. 155–164, 2016, doi: 10.1109/TPWRD.2015.2477476.

J. Lee, H. Jang, S. Shin, K. Jang, and J. Jung, “Over temperature protection in power module for hybrid and electric vehicle,” 2016 IEEE Transp. Electrif. Conf. Expo, Asia-Pacific, ITEC Asia-Pacific 2016, pp. 432–435, 2016, doi: 10.1109/ITEC-AP.2016.7512992.

A. Sinha, K. Chandra Jana, and M. Kumar Das, “An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system,” Sol. Energy, vol. 170, no. May, pp. 633–657, 2018, doi: 10.1016/j.solener.2018.06.001.

H. Taghizadeh and M. Tarafdar Hagh, “Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3678–3684, 2010, doi: 10.1109/TIE.2010.2041736.

B. Mahato, R. Raushan, and K. C. Jana, “Modulation and control of multilevel inverter for an open-end winding induction motor with constant voltage levels and harmonics,” IET Power Electron., vol. 10, no. 1, pp. 71–79, 2017, doi: 10.1049/iet-pel.2016.0105.

N. R. Jalakanuru and M. Y. Kiber, “Switching Angle Calculation By EP , HEP , HH And FF Methods For Modified 11-Level Cascade H-Bridge Multilevel Inverter,” vol. 6, no. 12, pp. 69–75, 2017.

H. Taghizadeh and M. Tarafdar Hagh, “Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3678–3684, 2010, doi: 10.1109/TIE.2010.2041736.

K. El-Naggar and T. H. Abdelhamid, “Selective harmonic elimination of new family of multilevel inverters using genetic algorithms,” Energy Convers. Manag., vol. 49, no. 1, pp. 89–95, 2008, doi: 10.1016/j.enconman.2007.05.014.

G. Konstantinou, M. Ciobotaru, and V. Agelidis, “Selective harmonic elimination pulse-width modulation of modular multilevel converters,” IET Power Electron., vol. 6, no. 1, pp. 96–107, 2013, doi: 10.1049/iet-pel.2012.0228.

J. Sun, S. Beineke, and H. Grotstollen, “Optimal PWM based on real-time solution of harmonic elimination equations,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 612–621, 1996, doi: 10.1109/63.506127.

K. Yang, Z. Yuan, R. Yuan, W. Yu, J. Yuan, and J. Wang, “A Groebner Bases Theory-Based Method for Selective Harmonic Elimination,” vol. 30, no. 12, pp. 6581–6592, 2015.

K. El-Naggar et al., “Elimination of lower order harmonics in Voltage Source Inverter feeding an induction motor drive using Evolutionary Algorithms,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 89–95, 2007, doi: 10.1016/j.eswa.2010.07.021.

K. Sundareswaran, K. Jayant, and T. N. Shanavas, “Inverter harmonic elimination through a colony of continuously exploring ants,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2558–2565, 2007, doi: 10.1109/TIE.2007.899846.

S. Barkat, E. M. Berkouk, and M. S. Boucherit, “Particle swarm optimization for harmonic elimination in multilevel inverters,” Electr. Eng., vol. 91, no. 4–5, pp. 221–228, 2009, doi: 10.1007/s00202-009-0135-9.

Z. Salam and N. Bahari, “Selective Harmonics Elimination PWM (SHE-PWM) using differential evolution approach,” 2010 Jt. Int. Conf. Power Electron. Drives Energy Syst. PEDES 2010 2010 Power India, pp. 2–6, 2010, doi: 10.1109/PEDES.2010.5712375.

A. Niknam Kumle, S. H. Fathi, F. Jabbarvaziri, M. Jamshidi, and S. S. Heidari Yazdi, “Application of memetic algorithm for selective harmonic elimination in multi-level inverters,” IET Power Electron., vol. 8, no. 9, pp. 1733–1739, 2015, doi: 10.1049/iet-pel.2014.0209.

M. Jafari, Z. Malekjamshidi, and M. R. Islam, “Optimal Design of a Multiwinding High-Frequency Transformer Using Reluctance Network Modeling and Particle Swarm Optimization Techniques for the Application of PV-Linked Grid-Connected Modular Multilevel Inverters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 4, pp. 5083–5096, 2021, doi: 10.1109/JESTPE.2020.3031731.

M. Salman et al., “Minimization of total harmonic distortions of cascaded H-bridge multilevel inverter by utilizing bio inspired AI algorithm,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, 2020, doi: 10.1186/s13638-020-01686-5.

V. Singh, G. V. V. R. Babu, and V. P. Singh, “New multi-level inverter topology with reduced number of switches,” Proc. Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-Janua, pp. 462–467, 2017, doi: 10.1109/ICECA.2017.8203727.

M. I. Sarwar et al., “A Hybrid Nearest Level Combined with PWM Control Strategy: Analysis and Implementation on Cascaded H-Bridge Multilevel Inverter and its Fault Tolerant Topology,” IEEE Access, vol. 9, pp. 44266–44282, 2021, doi: 10.1109/ACCESS.2021.3058136.

Y. Park, D. Kim, J. Kim, and B. Han, “A New Scheme for Nearest Level Control with Average Switching Frequency Reduction for Modular Multilevel Converters,” vol. 16, no. 2, pp. 522–531, 2016.

H. Zhang, Y. Meng, L. Ning, Y. Zou, X. Wang, and X. Wang, “Fast and simple space vector modulation method for multilevel converters,” IET Power Electron., vol. 13, no. 1, pp. 14–22, 2020, doi: 10.1049/iet-pel.2019.0264.

A. ? Venkatakrishna, R. ? Somanatham, and ? M. S. R., “Phase Shifted and Level Shifted PWM Based Cascaded Multilevel Inverter Fed Induction Motor Drive,” vol. 4, no. 1, pp. 350–354, 2014.

N. L. H. Bang, N. V. Nho, N. K. T. Tam, and N. M. Dung, “A phase shifted PWM technique for common-mode voltage reduction in five level H-bridge cascaded inverter,” Proc. 2014 Int. Conf. Util. Exhib. Green Energy Sustain. Dev. ICUE 2014, no. March, pp. 19–21, 2014.

Y. Li, Y. Wang, and B. Q. Li, “Generalized Theory of Phase-Shifted Carrier PWM for Cascaded H-Bridge Converters and Modular Multilevel Converters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 2, pp. 589–605, 2016, doi: 10.1109/JESTPE.2015.2476699.

Y. L. Familiant and A. Ruderman, “Discussion of A Variable Switching Frequency PWM Technique for Induction Motor Drive to Spread Acoustic Noise Spectrum with Reduced Current Ripple,” IEEE Trans. Ind. Appl., vol. 52, no. 6, p. 5355, 2016, doi: 10.1109/TIA.2016.2618298.

A. R. Kumar and T. Deepa, “Multilevel Inverters: A Review of Recent Topologies and New Modulation Techniques,” Proc. IEEE Int. Conf. "Recent Trends Electr. Control Commun. RTECC 2018, pp. 196–203, 2019, doi: 10.1109/RTECC.2018.8625667.

J. S. Choi and F. S. Kang, “Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3448–3459, 2015, doi: 10.1109/TIE.2014.2370948.

K. Wang, Z. Zheng, L. Xu, and Y. Li, “A Generalized Carrier-Overlapped PWM Method for Neutral-Point-Clamped Multilevel Converters,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9095–9106, 2020, doi: 10.1109/TPEL.2020.2969548.

A. Radan, A. H. Shahirinia, and M. Falahi, “Evaluation of carrier-based PWM methods for multi-level inverters,” IEEE Int. Symp. Ind. Electron., pp. 389–394, 2007, doi: 10.1109/ISIE.2007.4374629.

N. Li, T. Gao, Z. Cao, and H. Zhang, “Variable Switching Frequency PWM Strategy for Three-Level NPC Converter Based on Peak Prediction of Current Ripple,” 2018 1st Work. Wide Bandgap Power Devices Appl. Asia, WiPDA Asia 2018, pp. 71–74, 2018, doi: 10.1109/WiPDAAsia.2018.8734673.

V. Jayakumar, B. Chokkalingam, and J. L. Munda, “A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters,” IEEE Access, vol. 9, pp. 112104–112144, 2021, doi: 10.1109/ACCESS.2021.3100346.

L. Chaturvedi, D. K. Yadav, and G. Pancholi, “Comparison of SPWM,THIPWM and PDPWM technique based voltage source inverters for application in renewable energy,” J. Green Eng., vol. 7, no. 1–2, pp. 83–98, 2017, doi: 10.13052/jge1904-4720.7125.

S. M. Kim and K. B. Lee, “A Modified Third Harmonic Pulse-Width Modulation for Reduced Switching Loss in Cascaded H-Bridge Multilevel Inverters,” IFAC-PapersOnLine, vol. 52, no. 4, pp. 472–476, 2019, doi: 10.1016/j.ifacol.2019.08.255.

B. Tan, Z. Gu, K. Shen, and X. Ding, “Third harmonic injection SPWM method based on alternating carrier polarity to suppress the common mode voltage,” IEEE Access, vol. 7, pp. 9805–9816, 2019, doi: 10.1109/ACCESS.2018.2890014.

R. Maheshwari, S. Busquets-Monge, and J. Nicolas-Apruzzese, “A Novel Approach to Generate Effective Carrier-Based Pulsewidth Modulation Strategies for Diode-Clamped Multilevel DC-AC Converters,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7243–7252, 2016, doi: 10.1109/TIE.2016.2538198.

S. Das and G. Narayanan, “Novel switching sequences for a space-vector-modulated three-level inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1477–1487, 2012, doi: 10.1109/TIE.2011.2163373.

B. Kishore, “THD Reduction in Multi-Level Inverters based on Multicarrier Pulse Width Modulation Technique,” no. 4, pp. 1970–1977, 2020, doi: 10.35940/ijeat.D8994.049420.

S. Sumit Kumar and S. Ankit, “Comparative Analysis of Different PWM Techniques in a Five Level Inverter,” i-manager’s J. Electr. Eng., vol. 10, no. 2, p. 46, 2016, doi: 10.26634/jee.10.2.8325.

M. Tarafdar Hagh, H. Taghizadeh, and K. Razi, “Harmonic minimization in multilevel inverters using modified species-based particle swarm optimization,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2259–2267, 2009, doi: 10.1109/TPEL.2009.2022166.

H. Gupta, A. Yadav, and S. Maurya, “Multi carrier PWM and selective harmonic elimination technique for cascade multilevel inverter,” Proceeding IEEE - 2nd Int. Conf. Adv. Electr. Electron. Information, Commun. Bio-Informatics, IEEE - AEEICB 2016, no. July, pp. 98–102, 2016, doi: 10.1109/AEEICB.2016.7538405.

A. Pyrkin, R. Cisneros, D. U. Campos-Delgado, A. Bobtsov, and S. Somov, “A model-based fault-detection strategy in DC/AC conversion,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 676–681, 2020, doi: 10.1016/j.ifacol.2020.12.814.

J. Poon, P. Jain, I. C. Konstantakopoulos, C. Spanos, S. K. Panda, and S. R. Sanders, “Model-based fault detection and identification for switching power converters,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1419–1430, 2017, doi: 10.1109/TPEL.2016.2541342.

M. Salehifar, R. S. Arashloo, M. Moreno-Eguilaz, V. Sala, and L. Romeral, “Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles,” IET Power Electron., vol. 8, no. 1, pp. 76–87, 2015, doi: 10.1049/iet-pel.2013.0949.

E. M. Cimpoe?u, B. D. Ciubotaru, and D. ?tef?noiu, “Fault detection and identification using parameter estimation techniques,” UPB Sci. Bull. Ser. C Electr. Eng. Comput. Sci., vol. 76, no. 2, pp. 3–14, 2014.

J. Lamb and B. Mirafzal, “Open-Circuit IGBT Fault Detection and Location Isolation for Cascaded Multilevel Converters,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4846–4856, 2017, doi: 10.1109/TIE.2017.2674629.

H. W. Sim, J. S. Lee, and K. B. Lee, “A detection method for an open-switch fault in cascaded H-bridge multilevel inverters,” 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014, pp. 2101–2106, 2014, doi: 10.1109/ECCE.2014.6953680.

M. T. Fard, W. A. Khan, J. He, N. Weise, and M. Abarzadeh, “Fast Online Diagnosis of Open-circuit Switching Faults in Flying Capacitor Multilevel Inverters,” Chinese J. Electr. Eng., vol. 6, no. 4, 2020.

A. Anand, B. Akhil Vinayak, N. Raj, G. Jagadanand, and S. George, “A generalized switch fault diagnosis for cascaded h-bridge multilevel inverters using mean voltage prediction,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1563–1574, 2020, doi: 10.1109/TIA.2019.2959540.

M. Shahbazi, M. R. Zolghadri, M. Khodabandeh, and S. Ouni, “Fast detection of open-switch fault in cascaded H-bridge multilevel converter,” Sci. Iran., vol. 25, no. 3D, pp. 1561–1570, 2018, doi: 10.24200/sci.2017.4371.

M. Hassanifar, “Fast Detection and Localization of Open-Circuit Switch Faults in Nested Neutral Point Clamped ( NNPC ) Inverter,” Ieee, pp. 8–13, 2020.

M. Alavi, D. Wang, and M. Luo, “Model-based diagnosis and fault tolerant control for multi-level inverters,” IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1548–1553, 2015, doi: 10.1109/IECON.2015.7392321.

J. Rodriguez et al., “State of the art of finite control set model predictive control in power electronics,” IEEE Trans. Ind. Informatics, vol. 9, no. 2, pp. 1003–1016, 2013, doi: 10.1109/TII.2012.2221469.

J. Amini et al., “Finite-set model-based predictive control for flying-capacitor converters: Cost function design and efficient FPGA implementation,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2054–2063, 2013, doi: 10.1109/TIE.2014.2354591.

J. Druant, T. Vyncke, F. De Belie, P. Sergeant, and J. Melkebeek, “Adding Inverter Fault Detection to Model-Based Predictive Control for Flying-Capacitor Inverters,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2054–2063, 2015, doi: 10.1109/TIE.2014.2354591.

Z. Ge, Z. Song, and F. Gao, “Review of recent research on data-based process monitoring,” Ind. Eng. Chem. Res., vol. 52, no. 10, pp. 3543–3562, 2013, doi: 10.1021/ie302069q.

T. Wang, H. Xu, J. Han, E. Elbouchikhi, and M. E. H. Benbouzid, “Cascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine Approach,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7006–7018, 2015, doi: 10.1109/TPEL.2015.2393373.

S. Yin, S. X. Ding, P. Zhang, A. Hagahni, and A. Naik, Study on modifications of PLS approach for process monitoring, vol. 44, no. 1 PART 1. IFAC, 2011.

M. Kumar, “Open Circuit Fault Detection and Switch Identification for LS-PWM H-Bridge Inverter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 4, pp. 1363–1367, 2021, doi: 10.1109/TCSII.2020.3035241.

H. Truong, C. Mai, C. Nguyen, and P. Vu, “Modified space vector modulation for cascaded H-bridge multilevel inverter with open-circuit power cells,” J. Electr. Comput. Eng., vol. 2021, 2021, doi: 10.1155/2021/6643589.

K. Sarita, S. Member, S. Kumar, S. Member, R. K. Saket, and S. Member, “Open-Circuit Fault Diagnosis in Multilevel Inverters Implementing PCA-WE-SVM Technique,” IEEE Trans. Ind. Appl., no. September, 2020.

F. Charfi, F. Sellami, and K. Al-Haddad, “Fault diagnostic in power system using wavelet transforms and neural networks,” IEEE Int. Symp. Ind. Electron., vol. 2, no. 1, pp. 1143–1148, 2006, doi: 10.1109/ISIE.2006.295798.

V. Vinothkumar and C. Muniraj, “Fault diagnosis in diode clamped multilevel inverter drive using wavelet transforms,” 2013 Int. Conf. Green High Perform. Comput. ICGHPC 2013, pp. 1–6, 2013, doi: 10.1109/ICGHPC.2013.6533925.

A. Anand, N. Raj, S. George, and G. Jagadanand, “Wavelet-based open switch fault diagnosis in cascaded H-bridge multilevel inverter-fed induction motor drive,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2017-Decem, pp. 545–550, 2017, doi: 10.1109/TENCON.2017.8227923.

R. G. Carvajal, J. Galan, and A. Torralba, “Wavelet neural network approach for fault diagnosis of analogue circuits,” IEE Proc.-Circuits Devices Syst., vol. 152, no. 5, pp. 379–385, 2005, doi: 10.1049/ip-cds.

S. Liu, X. Qian, H. Wan, Z. Ye, S. Wu, and X. Ren, “NPC Three-level inverter open-circuit fault diagnosis based on adaptive electrical period partition and random forest,” J. Sensors, vol. 2020, 2020, doi: 10.1155/2020/9206579.

S. Khomfoi and L. M. Tolbert, “Fault diagnostic system for a multilevel inverter using a neural network,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1062–1069, 2007, doi: 10.1109/TPEL.2007.897128.

W. Yuan, T. Wang, and D. Diallo, “A Secondary Classification Fault Diagnosis Strategy Based on PCA-SVM for Cascaded Photovoltaic Grid-connected Inverter,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 5986–5991, 2019, doi: 10.1109/IECON.2019.8927090.

Y. L. Murphey, M. A. Masrur, Z. H. Chen, and B. Zhang, “Model-based fault diagnosis in electric drives using machine learning,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 3, pp. 290–303, 2006, doi: 10.1109/TMECH.2006.875568.

B. P. Babu, J. V. S. Srinivas, B. Vikranth, and P. Premchnad, “Fault diagnosis in multi-level inverter system using adaptive back propagation neural network,” Proc. INDICON 2008 IEEE Conf. Exhib. Control. Commun. Autom., vol. 2, pp. 494–498, 2008, doi: 10.1109/indcon.2008.4768773.

N. Raj, G. Jagadanand, and S. George, “Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network,” Int. J. Electron., vol. 105, no. 4, pp. 559–571, 2018, doi: 10.1080/00207217.2017.1378382.

S. Khomfoi and L. M. Tolbert, “Fault detection and reconfiguration technique for cascaded H-bridge 11-level inverter drives operating under faulty condition,” Proc. Int. Conf. Power Electron. Drive Syst., pp. 1035–1042, 2007, doi: 10.1109/PEDS.2007.4487831.

A. Chappa, S. Gupta, L. K. Sahu, and K. K. Gupta, “Fault Diagnosis of Cascaded H-bridge Multilevel Inverter by DWPT Multi resolution and ANN,” 2020 1st Int. Conf. Power, Control Comput. Technol. ICPC2T 2020, pp. 128–133, 2020, doi: 10.1109/ICPC2T48082.2020.9071512.

P. Achintya and L. Kumar Sahu, “Open circuit switch fault detection in multilevel inverter topology using machine learning techniques,” PIICON 2020 - 9th IEEE Power India Int. Conf., 2020, doi: 10.1109/PIICON49524.2020.9112870.

E. Parimalasundar and N. Suthanthira Vanitha, “Identification of open-switch and short-switch failure of multilevel inverters through DWT and ANN approach using LabVIEW,” J. Electr. Eng. Technol., vol. 10, no. 6, pp. 2277–2287, 2015, doi: 10.5370/JEET.2015.10.6.2277.

T. Wang, J. Qi, H. Xu, Y. Wang, L. Liu, and D. Gao, “Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter,” ISA Trans., vol. 60, pp. 156–163, 2016, doi: 10.1016/j.isatra.2015.11.018.

D. Chowdhury, M. Bhattacharya, D. Khan, S. Saha, and A. Dasgupta, “Wavelet decomposition based fault detection in cascaded H-bridge multilevel inverter using artificial neural network,” RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc., vol. 2018-Janua, pp. 1931–1935, 2017, doi: 10.1109/RTEICT.2017.8256934.

T. G. Manjunath and A. Kusagur, “Multilevel inverter fault diagnosis using optimised radial basis neural network - A novel performance enhancement,” 2016 Int. Conf. Electr. Electron. Commun. Comput. Optim. Tech. ICEECCOT 2016, pp. 102–105, 2017, doi: 10.1109/ICEECCOT.2016.7955194.

R. Ramkumar, R. Harine, G. Akthar Shehanaz, S. Gowthami, and A. Professor, “Fault Detection and Diagnosition System for a 19 Level Cascaded Multilevel Inverter using ANN,” Int. J. Sci. Res. Sci. Technol., vol. 7, no. 3, pp. 153–159, 2017.

R. Rajabioun, “Cuckoo optimization algorithm,” Appl. Soft Comput. J., vol. 11, no. 8, pp. 5508–5518, 2011, doi: 10.1016/j.asoc.2011.05.008.

T. G. and A. Kusagur, “Robust Fault Detection of Multilevel Inverter using Optimized Radial Basis Function based Artificial Neural Network in Renewable Energy Power Generation Application,” Int. J. Comput. Appl., vol. 180, no. 48, pp. 8–15, 2018, doi: 10.5120/ijca2018917231.

T. K. Mohan and S. F. Mohammed, “A neuro-fuzzy controller for multilevel renewable energy system,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 4120–4123, 2016, doi: 10.1109/ICEEOT.2016.7755491.

C. N. Ibem, M. E. Farrag, and A. A. Aboushady, “New Fuzzy Logic Based Switch-Fault Diagnosis in Three Phase Inverters,” UPEC 2020 - 2020 55th Int. Univ. Power Eng. Conf. Proc., 2020, doi: 10.1109/UPEC49904.2020.9209873.

N. V. P. Kuraku, Y. He, T. Shi, R. K. Gatla, and R. Yi, “Fuzzy logic based open-circuit fault diagnosis in IGBT for CMLI fed PMSM drive,” Microelectron. Reliab., vol. 100–101, no. May, p. 113415, 2019, doi: 10.1016/j.microrel.2019.113415.

M. Aly and H. Rezk, “An Efficient Fuzzy Logic Fault Detection and Identification Method of Photovoltaic Inverters,” Comput. Mater. Contin., vol. 67, no. 2, pp. 2283–2299, 2021, doi: 10.32604/cmc.2021.014786.

C. Huang, J. Zhao, and C. Wu, “Data-based inverter IGBT open-circuit fault diagnosis in vector control induction motor drives,” Proc. 2013 IEEE 8th Conf. Ind. Electron. Appl. ICIEA 2013, pp. 1039–1044, 2013, doi: 10.1109/ICIEA.2013.6566520.

A. Belaout, F. Krim, A. Mellit, B. Talbi, and A. Arabi, “Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification,” Renew. Energy, vol. 127, pp. 548–558, 2018, doi: 10.1016/j.renene.2018.05.008.

V. Devadoss, P. Chandramohanan, and H. Al, “Diagnosis of Faulty IGBT Switches in Multi-Level Inverter Using ANFIS Technique,” Turkish J. Comput. Math. Educ., vol. 12, no. 6, pp. 5626–5634, 2021.

H. Hu, F. Feng, and T. Wang, “Open-circuit fault diagnosis of NPC inverter IGBT based on independent component analysis and neural network,” Energy Reports, vol. 6, pp. 134–143, 2020, doi: 10.1016/j.egyr.2020.11.273.

L. Kou, C. Liu, G. wei Cai, and Z. Zhang, “Fault Diagnosis for Power Electronics Converters based on Deep Feedforward Network and Wavelet Compression,” Electr. Power Syst. Res., vol. 185, no. August 2018, p. 106370, 2020, doi: 10.1016/j.epsr.2020.106370.

W. Jiang, C. Wang, Y. P. Li, and M. Wang, “Fault detection and remedy of multilevel inverter based on BP neural network,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 1, pp. 2–5, 2012, doi: 10.1109/APPEEC.2012.6307658.

F. F. Extraction, “Research on the NPC Three-Level Inverter Fault Feature Extraction Method Based on Wavelet Analysis,” Appl. Mech. Mater., vol. 495, pp. 1410–1413, 2014, doi: 10.4028/www.scientific.net/AMM.494-495.1410.

G. K. Kumar, E. Parimalasundar, D. Elangovan, P. Sanjeevikumar, F. Lannuzzo, and J. B. Holm-Nielsen, “Fault investigation in cascaded H-bridge multilevel inverter through fast fourier transform and artificial neural network approach,” Energies, vol. 13, no. 6, 2020, doi: 10.3390/en13061299.

M. Sivakumar and R. M. S. Parvathi, “Particle swarm and neural network approach for fault clearing of multilevel inverters,” Am. J. Appl. Sci., vol. 10, no. 6, pp. 579–595, 2013, doi: 10.3844/ajassp.2013.579.595.

S. S. Moosavi, A. Djerdir, Y. Ait-Amirat, D. A. Khaburi, and A. N’Diaye, “Artificial neural network-based fault diagnosis in the AC-DC converter of the power supply of series hybrid electric vehicle,” IET Electr. Syst. Transp., vol. 6, no. 2, pp. 96–106, 2016, doi: 10.1049/iet-est.2014.0055.

J. H. Lee and K. B. Lee, “A Fault Detection Method and a Tolerance Control in a Single-Phase Cascaded H-bridge Multilevel Inverter,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7819–7823, 2017, doi: 10.1016/j.ifacol.2017.08.1058.

P. Mehta, M. Kumar, and S. Sahoo, “Fault Diagnosis in Five-level CHB Inverter using Normalization Factor and THD Analysis,” India Int. Conf. Power Electron. IICPE, vol. 2018-Decem, no. 1, pp. 1–5, 2018, doi: 10.1109/IICPE.2018.8709547.

B. Mirafzal, “Survey of fault-tolerance techniques for three-phase voltage source inverters,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5192–5202, 2014, doi: 10.1109/TIE.2014.2301712.

S. P. Gautam, L. Kumar, S. Gupta, and N. Agrawal, “A Single-Phase Five-Level Inverter Topology with Switch Fault-Tolerance Capabilities,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2004–2014, 2017, doi: 10.1109/TIE.2016.2626368.

C. Sadanala, S. Pattnaik, and V. P. Singh, “Fault tolerant architecture of an efficient five-level multilevel inverter with overload capability characteristics,” IET Power Electron., vol. 13, no. 2, pp. 368–376, 2020, doi: 10.1049/iet-pel.2019.0736.

M. R. A and K. Sivakumar, “A Fault-Tolerant Single-Phase Five-Level Inverter for Grid-Independent PV Systems,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7569–7577, 2015, doi: 10.1109/TIE.2015.2455523.

S. Ceballos, J. Pou, J. Zaragoza, E. Robles, J. L. Villate, and J. L. Martín, “Fault-tolerant neutral-point-clamped converter solutions based on including a fourth resonant leg,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2293–2303, 2011, doi: 10.1109/TIE.2010.2069075.

M. Aly, E. M. Ahmed, and M. Shoyama, “A New Single-Phase Five-Level Inverter Topology for Single and Multiple Switches Fault Tolerance,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9198–9208, 2018, doi: 10.1109/TPEL.2018.2792146.

M. Jalhotra, S. P. Gautam, L. Kumar, S. Gupta, and A. Hema Chander, “Fault tolerance and energy sharing analysis of a single phase multilevel inverter topology,” Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., pp. 1209–1213, 2018, doi: 10.1109/IECON.2018.8591853.

A. Chappa, S. Gupta, L. K. Sahu, and K. K. Gupta, “A Fault-Tolerant Multilevel Inverter Topology with Preserved Output Power and Voltage Levels under Pre- And Postfault Operation,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 5756–5764, 2021, doi: 10.1109/TIE.2020.2994880.

R. Jun Li, Jing Xu, Lisa Qi, Zach Pan, Burgos, V. Tech, and A. F. A. Inverters, “Analysis and Control of Fault Tolerant Operation of Five level ANPC Inverters,” Ieee Work. COMPEL, pp. 1–6, 2014.

Y. J. Kim, S. H. Kim, S. M. Kim, and K. B. Lee, “Open Fault Diagnosis and Tolerance Control for Grid-Connected Hybrid Active Neutral-Point-Clamped Inverters with Optimized Carrier-Based Pulse Width Modulation,” IEEE Access, vol. 8, pp. 145542–145551, 2020, doi: 10.1109/ACCESS.2020.3013566.

P. Azer, S. Ouni, and M. Narimani, “A Novel Fault-Tolerant Technique for Active-Neutral-Point-Clamped Inverter Using Carrier-Based PWM,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1792–1803, 2020, doi: 10.1109/TIE.2019.2903764.

L. M. Halabi, I. M. Alsofyani, and K. B. Lee, “Multiple-fault-Tolerant strategy for three-phase hybrid active neutral point clamped converters using enhanced space vector modulation technique,” IEEE Access, vol. 8, pp. 180113–180123, 2020, doi: 10.1109/ACCESS.2020.3028115.

H. Wang, “A Short-Circuit Fault-Tolerant Strategy for Three- Phase Four-Wire Flying Capacitor Three-Level Inverters,” IEEE 10th Int. Symp. Power Electron. Distrib. Gener. Syst., no. 51777189, pp. 781–786, 2019, doi: 10.1109/PEDG.2019.8807759.

X. Kou, K. A. Corzine, and Y. L. Familiant, “A unique fault-tolerant design for flying capacitor multilevel inverter,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 979–987, 2004, doi: 10.1109/TPEL.2004.830037.

R. P. Aguilera, D. E. Quevedo, T. J. Summers, and P. Lezana, “Predictive control algorithm robustness for achieving fault tolerance in multicell converters,” IECON Proc. (Industrial Electron. Conf., pp. 3302–3308, 2008, doi: 10.1109/IECON.2008.4758489.

J. Amini and M. Moallem, “A Fault-Diagnosis and Fault-Tolerant Control Scheme for Flying Capacitor Multilevel Inverters,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1818–1826, 2017, doi: 10.1109/TIE.2016.2624722.

A. Chen, C. Zhang, X. He, and N. Cui, “Fault-tolerant design for flying capacitor multilevel inverters,” 2009 IEEE 6th Int. Power Electron. Motion Control Conf. IPEMC ’09, vol. 3, pp. 1460–1464, 2009, doi: 10.1109/IPEMC.2009.5157616.

S. K. Maddugari, V. B. Borghate, and S. Member, “A Reliable Fault Tolerant Inverter,” IEEE Conf. Proc., pp. 2–6, 2020, doi: 10.1109/stpec49749.2020.9297681.

M. M. Haji-Esmaeili, M. Naseri, H. Khoun-Jahan, and M. Abapour, “Fault-tolerant structure for cascaded h-bridge multilevel inverter and reliability evaluation,” IET Power Electron., vol. 10, no. 1, pp. 59–70, 2017, doi: 10.1049/iet-pel.2015.1025.

H. K. Jahan, F. Panahandeh, M. Abapour, and S. Tohidi, “Reconfigurable Multilevel Inverter with Fault-Tolerant Ability,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7880–7893, 2018, doi: 10.1109/TPEL.2017.2773611.

A. A. Stonier and B. Lehman, “An Intelligent-Based Fault-Tolerant System for Solar-Fed Cascaded Multilevel Inverters,” IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1047–1057, 2018, doi: 10.1109/TEC.2017.2786299.

H. Salimian and H. Iman-Eini, “Fault-Tolerant Operation of Three-Phase Cascaded H-Bridge Converters Using an Auxiliary Module,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1018–1027, 2017, doi: 10.1109/TIE.2016.2613983.

V. S. P. K, S. Peddapati, and S. Naresh, “A New Fault-Tolerant MLI - Investigating Its Skipped Level Performance,” IEEE Trans. Ind. Electron., vol. 0046, no. c, 2021, doi: 10.1109/TIE.2021.3062259.

N. K. Dewangan, T. K. Tailor, R. Agrawal, P. Bhatnagar, and K. K. Gupta, “A multilevel inverter structure with open circuit fault-tolerant capability,” Electr. Eng., no. 0123456789, 2021, doi: 10.1007/s00202-020-01149-6.

S. M. Kim, J. S. Lee, and K. B. Lee, “A Modified Level-Shifted PWM Strategy for Fault-Tolerant Cascaded Multilevel Inverters with Improved Power Distribution,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7264–7274, 2016, doi: 10.1109/TIE.2016.2547917.

L. Xiong, F. Zhuo, X. Liu, Z. Xu, and Y. Zhu, “Fault-Tolerant Control of CPS-PWM-Based Cascaded Multilevel Inverter with Faulty Units,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 4, pp. 2486–2497, 2019, doi: 10.1109/JESTPE.2019.2898907.

T. Wang, J. Zhang, H. Wang, Y. Wang, D. Diallo, and M. Benbouzid, “Multi-mode fault-tolerant control strategy for cascaded H-bridge multilevel inverters,” IET Power Electron., vol. 13, no. 14, pp. 3119–3126, 2020, doi: 10.1049/iet-pel.2020.0109.

M. Inverter et al., “A Fault-Tolerant Hybrid Cascaded H-Bridge,” IEEE Transcations Power Electron. vol. 35, no. 12, december 2020, vol. 35, no. 12, pp. 12702–12715, 2020.

M. Jalhotra, L. K. Sahu, S. Gupta, and S. P. Gautam, “Resilient Fault-Tolerant Topology of Single-Phase Multilevel Inverter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 2, pp. 1915–1922, 2021, doi: 10.1109/JESTPE.2019.2936271.

T. J. Nistane, L. K. Sahu, M. Jalhotra, and S. P. Gautam, “Single and multiple switch fault-tolerance capabilities in a hybrid five-level inverter topology,” IET Power Electron., vol. 13, no. 6, pp. 1257–1266, 2020, doi: 10.1049/iet-pel.2019.0716.

S. P. Gautam, S. Gupta, and L. Kumar, “Reliability improvement of transistor clamped H-bridge-based cascaded multilevel inverter,” IET Power Electron. Res., pp. 770–781, 2017, doi: 10.1049/iet-pel.2016.0574.

B. S. Kumar and A. Kirubakaran, “A Complete Fault-Tolerant Solution for A Single-Phase Five-Level Hybrid Flying Capacitor Inverter,” 2019 Innov. Power Adv. Comput. Technol. i-PACT 2019, pp. 1–5, 2019, doi: 10.1109/i-PACT44901.2019.8960006.

R. Choupan, S. Golshannavaz, D. Nazarpour, and M. Barmala, “A new structure for multilevel inverters with fault-tolerant capability against open circuit faults,” Electr. Power Syst. Res., vol. 168, no. November 2018, pp. 105–116, 2019, doi: 10.1016/j.epsr.2018.11.013.

N. K. Dewangan, P. Bhatnagar, S. K. Jain, S. Gupta, and K. K. Gupta, “Open-Switch Fault Tolerance Capabilities of Some Reduced Device Count Multilevel Inverter Topologies,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 44, no. 1, pp. 253–264, 2020, doi: 10.1007/s40998-019-00241-3.

M. Santosh Kumar, V. B. Borghate, and S. Sabyasachi, “A Generalized Fault Tolerant Multilevel Inverter for Switch Open-Circuit Faults,” Proc. 2018 IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2018, pp. 1–6, 2018, doi: 10.1109/PEDES.2018.8707742.

S. Sabyasachi, V. B. Borghate, S. K. Maddugari, and R. R. Karasani, “A reliable multilevel inverter with fault tolerance,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2017-Decem, pp. 557–562, 2017, doi: 10.1109/TENCON.2017.8227925.

M. M. Rahman, S. Hossain, and S. Rezwan, “Seven-Level Cascaded H-Bridge Inverter and Fault-Tolerant Control Strategy,” ICIET 2019 - 2nd Int. Conf. Innov. Eng. Technol., vol. 3, no. 1, pp. 23–24, 2019, doi: 10.1109/ICIET48527.2019.9290714.

Manik, S. P. Gautam, L. Kumar, A. Hema Chander, and S. Gupta, “Reliability analysis of a novel fault tolerant multilevel inverter topology,” Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., pp. 1460–1465, 2018, doi: 10.1109/IECON.2018.8592684.

D. S. Pillai and N. Rajasekar, “A comprehensive review on protection challenges and fault diagnosis in PV systems,” Renew. Sustain. Energy Rev., vol. 91, no. March, pp. 18–40, 2018, doi: 10.1016/j.rser.2018.03.082.

H. Mekki, A. Mellit, and H. Salhi, “Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules,” Simul. Model. Pract. Theory, vol. 67, pp. 1–13, 2016, doi: 10.1016/j.simpat.2016.05.005.

K. Nallamekala, S. Dandabatthina, and V. K. Tella, “A novel fault tolerant 21-level inverter configuration for PV applications,” Proc. IEEE Int. Conf. Circuit, Power Comput. Technol., 2017, doi: 10.1109/ICCPCT.2017.8074239.

K. Roopa, P. Jugge, and S. T. Kalyani, “A new 15-level inverter configuration with fault tolerant capability for PV applications,” IEEE Int. Conf. Power, Control. Signals Instrum. Eng. ICPCSI 2017, pp. 1830–1835, 2018, doi: 10.1109/ICPCSI.2017.8392031.

M. N. Rao, N. Karthick, and A. M. Rao, “Fault tolerant ability of a multi level inverter fed three phase induction motor for water pumping application,” Proc. 7th Int. Conf. Electr. Energy Syst. ICEES 2021, pp. 212–216, 2021, doi: 10.1109/ICEES51510.2021.9383689.

Z. Liu, S. Wang, Z. Ji, X. Ji, and Y. Xie, “A novel fault-tolerant control for battery-energy-storage system based on cascaded multilevel converter with battery/BMS failure,” Microelectron. Reliab., vol. 88–90, no. June, pp. 1268–1273, 2018, doi: 10.1016/j.microrel.2018.06.067.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i2.12586.g8465

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4