Assessment of Power Curve Fitting Performance of Parametric Models for Wind Turbines

Mehmet Yesilbudak

Abstract


In wind energy systems, wind speed variability and wind power fluctuation negatively affect the power system reliability. To overcome this challenge, actual wind turbine power curves serve as one of the important tools for condition monitoring and troubleshooting, easier forecast of wind power production and ensuring the stable operation of wind turbines. Motivated by this, this study compares the goodness-of-fit results of polynomial, Fourier, Gaussian and sum of sines parametric models in wind turbine power curve fitting. According to the accuracy results obtained, 9th-degree polynomial, 8-term Fourier, 4-term Gaussian and 5-term sum of sines models show good parametric modeling performance in their own curve fitting category. Among them, 8-term Fourier model stands out by achieving the least power curve fitting errors. In addition, traditional benchmark models have been outdone in terms of the goodness-of-fit statistics.

Keywords


Wind turbine; power curve; parametric modeling; goodness-of-fit; comparison

Full Text:

PDF

References


E.B. Youssef and F. Mohamed, “Performance evaluation of photovoltaic, wind turbine, and concentrated solar power systems in Morocco”, International Journal of Renewable Energy Research, vol. 14, no. 3, pp. 625-639, September 2024. DOI: 10.2 0508/ijrer.v14i3.14424.g8941.

H. Jia and K. Ohyama, “Stability analysis of speed control systems for variable speed wind power generation systems using SRG and capacitor-less AC-AC converters”, 13th International Conference on Renewable Energy Research and Applications, pp. 493-497, 09-13 November 2024, Nagasaki, Japan. DOI: 10. 1109/ICRERA62673.2024.10815220.

G. Liang, Y. Su, F. Chen, H. Long, Z. Song and Y. Gan, “Wind power curve data cleaning by image thresholding based on class uncertainty and shape dissimilarity”, IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 1383-1393, April 2021. DOI: 10.1109/TSTE.2020.3045782.

T. Houy, K.E. Plewe and D. Chen, “Economic viability and technical challenges of integrating offshore wind energy with microgrids”, 12th International Conference on Smart Grid, pp. 761-766, 27-29 May 2024, Setubal, Portugal. DOI: 10.1109/icSmartGrid61824.2024.10578 084.

M.A. Hazzaa, S.H.A. El-Banna and D.H.M. Helmi, “Maintaining system stability with high penetration of wind energy via fault ride through (FRT) criteria development (system operator perspective)”, International Journal of Renewable Energy Research, vol. 14, no. 4, pp. 867-878, December 2024. DOI: 10.20 508/ijrer.v14i4.14460.g8962.

X. Shen, “Set-valued regression of wind power curve”, IEEE Transactions on Sustainable Energy, vol. 16, no. 1, pp. 350-364, January 2025. DOI: 10.1109/TSTE.202 4.3458916.

B. Sweetman and S. Dai, “Transformation of wind turbine power curves using the statistics of the wind process”, IEEE Transactions on Sustainable Energy, vol. 12, no. 4, pp. 2053-2061, October 2021. DOI: 10.1 109/TSTE.2021.3078774.

M. Zadehbagheri, S. Masoumi and V. Nazerian, “Coordinating the participation of energy sources and wind units in micro-grid frequency control by delaying micro-grid parameter measurement systems”, International Journal of Smart Grid, vol. 8, no. 2, pp. 81-97, June 2024. DOI: 10.20508/ijsmartgrid.v8i2.323. g354.

A.K. Das, “An empirical model of power curve of a wind turbine”, Energy Systems, vol. 5, no. 3, pp. 507-518, March 2014. DOI: 10.1007/s12667-013-0101-5.

S. Seo, S.D. Oh and H.Y. Kwak, “Wind turbine power curve modeling using maximum likelihood estimation method”, Renewable Energy, vol. 136, pp. 1164-1169, June 2019. DOI: 10.1016/j.renene.2018.09.087.

H. Long, L. Wang, Z. Zhang, Z. Song and J. Xu, “Data-driven wind turbine power generation performance monitoring”, IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6627-6635, October 2015. DOI: 10.1109/TIE.2015.2447508.

T.P. Chang, F.J. Liu, H.H. Ko, S.P. Cheng and S.C. Kuo, “Comparative analysis on power curve models of wind turbine generator in estimating capacity factor”, Energy, vol. 73, pp. 88-95, August 2014. DOI: 10.1016/ j.energy.2014.05.091.

C. Carrillo, A.F. Obando-Montaño, J. Cidrás and E. Díaz-Dorado, “Review of power curve modelling for wind turbines”, Renewable and Sustainable Energy Reviews, vol. 21, pp. 572-581, May 2013. DOI: 10.101 6/j.rser.2013.01.012.

X. Liu, “An improved interpolation method for wind power curves”, IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 528-534, July 2012. DOI: 10.1 109/TSTE.2012.2191582.

Z. Fan and C. Zhu, “The optimization and the application for the wind turbine power-wind speed curve”, Renewable Energy, vol. 140, pp. 52-61, September 2019. DOI: 10.1016/j.renene.2019.03.051.

B.K. Saxena and K.V.S. Rao, “Comparison of Weibull parameters computation methods and analytical estimation of wind turbine capacity factor using polynomial power curve model: Case study of a wind farm”, Renewables: Wind, Water, and Solar, vol. 2, no. 3, pp. 1-11, January 2015. DOI: 10.1186/s40807-014-0003-8.

P. Roberge, J. Lemay, J. Ruel and A.B. Drolet, “Towards standards in the analysis of wind turbines operating in cold climate - Part A: Power curve modeling and rotor icing detection”, Cold Regions Science and Technology, vol. 196, 103436, April 2022. DOI: 10.1016/j.coldregions.2021.103436.

S. Letzgus and K.R. Müller, “An explainable AI framework for robust and transparent data-driven wind turbine power curve models”, Energy and AI, vol. 15, 100328, January 2024. DOI: 10.1016/j.egyai.2023.1003 28.

A. Sebastiani, A. Peña and N. Troldborg, “Numerical evaluation of multivariate power curves for wind turbines in wakes using nacelle lidars”, Renewable Energy, vol. 202, pp. 419-431, January 2023. DOI: 10.1016/j.renene.2022.11.081.

A. Sebastiani, N. Angelou and A. Peña, “Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar”, Applied Energy, vol. 364, 122985, June 2024. DOI: 10.1016/j. apenergy.2024.122985.

J. Yan and T. Ouyang, “Advanced wind power prediction based on data-driven error correction”, Energy Conversion and Management, vol. 180, pp. 302-311, January 2019. DOI: 10.1016/j.enconman.2018.10. 108.

K. Khodabux, B.S. Bhujun, R.C. Naidu and K. Busawon, “Mathematical approach to modelling sigmoidal power curves for wind energy conversion systems”, 7th International Conference on Environment Friendly Energies and Applications, pp. 1-6, 14-16 December 2022, Bagatelle Moka, MU, Mauritius. DOI: 10.1109/EFEA56675.2022.10063743.

N. Karthik, R. Arul and M.J.H. Prasad, “Modeling of wind turbine power curves using firefly algorithm”, Power Electronics and Renewable Energy Systems, Lecture Notes in Electrical Engineering, vol. 326, pp. 1407-1414, Springer, 2015. DOI: 10.1007/978-81-322-2119-7_137.

D. Villanueva and A. Feijóo, “Comparison of logistic functions for modeling wind turbine power curves”, Electric Power Systems Research, vol. 155, pp. 281-288, February 2018. DOI: 10.1016/j.epsr.2017.10.028.

M. Lydia, A.I. Selvakumar, S.S. Kumar and G.E.P. Kumar, “Advanced algorithms for wind turbine power curve modeling”, IEEE Transactions on Sustainable Energy, vol. 4, no. 3, pp. 827-835, July 2013. DOI: 10.1 109/TSTE.2013.2247641.

D. Villanueva and A.E. Feijóo, “Reformulation of parameters of the logistic function applied to power curves of wind turbines”, Electric Power Systems Research, vol. 137, pp. 51-58, August 2016. DOI: 10.10 16/j.epsr.2016.03.045.

H. Xie, Q. Zhou, S. Zhong, Z. Xi and H. Wang, “Data cleaning and modeling of wind power curves”, 10th International Conference on Power and Energy Systems Engineering, pp. 188-193, 08-10 September 2023, Nagoya, Japan. DOI: 10.1109/CPESE59653.2023.1030 3189.

F. Pelletier, C. Masson and A. Tahan, “Wind turbine power curve modelling using artificial neural network”, Renewable Energy, vol. 89, pp. 207-214, April 2016. DOI: 10.1016/j.renene.2015.11.065.

R. Zou, J. Yang, Y. Wang, F. Liu, M. Essaaidi and D. Srinivasan, “Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer”, Applied Energy, vol. 304, 117707, December 2021. DOI: 10.1016/j.apen ergy.2021.117707.

Z. Zheng, L. Yang and Z. Zhang, “Conditional variational autoencoder informed probabilistic wind power curve modeling”, IEEE Transactions on Sustainable Energy, vol. 14, no. 4, pp. 2445-2460, October 2023. DOI: 10.1109/TSTE.2023.3283515.

K. Mushtaq, A. Waris, R. Zou, U. Shafique, N.B. Khan, M. Ijaz Khan, M. Jameel and M. Imran Khan, “A comprehensive approach to wind turbine power curve modeling: Addressing outliers and enhancing accuracy”, Energy, vol. 304, 131981, September 2024. DOI: 10.1016/j.energy.2024.131981.

D. Wei, J. Wang, Z. Li and R. Wang, “Wind power curve modeling with hybrid copula and grey wolf optimization”, IEEE Transactions Sustainable Energy, vol. 13, no. 1, pp. 265-276, January 2022. DOI: 10.1109 /TSTE.2021.3109044.

L. Yang, L. Wang and Z. Zhang, “Generative wind power curve modeling via machine vision: A deep convolutional network method with data-synthesis-informed-training”, IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1111-1124, March 2023. DOI: 10.1109/TPWRS.2022.3172508.

Y. Wang, X. Duan, R. Zou, F. Zhang, Y. Li and Q. Hu, “A novel data-driven deep learning approach for wind turbine power curve modeling”, Energy, vol. 270, 126908, May 2023. DOI: 10.1016/j.energy.2023.12690 8.

Z. Wang, X. Wang and W. Liu, “Genetic least square estimation approach to wind power curve modelling and wind power prediction”, Scientific Reports, vol. 13, 9188, June 2023. DOI: 10.1038/s41598-023-36458-w.

Y. Wang, X. Duan, D. Song, R. Zou, F. Zhang and Y. Li, “Wind power curve modeling with large-scale generalized kernel-based regression model”, IEEE Transactions on Sustainable Energy, vol. 14, no. 4, pp. 2121-2132, October 2023. DOI: 10.1109/TSTE.2023.32 76906.

S. Ge, M.J. Zuo and Z. Tian, “Wind turbine power output estimation with probabilistic power curves”, Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, pp. 1-6, 20-23 August 2020, Vancouver, BC, Canada. DOI: 10.1109/A PARM49247.2020.9209346.

MathWorks Documentation, Sum of Sines Models. Available at: https://www.mathworks.com/help/curvefit/sum-of-sine.html. [Accessed on 27.12.2024]

MathWorks Documentation, Gaussian Models. Available at: https://www.mathworks.com/help/curvefit/gaussian.html. [Accessed on 27.12.2024]

MathWorks Documentation, Fit Fourier Models. Available at: https://www.mathworks.com/help/curvefit/fourier.html. [Accessed on 27.12.2024]

MathWorks Documentation, Polynomial Models. Available at: https://www.mathworks.com/help/curvefit/polynomial.html. [Accessed on 27.12.2024]

Open Platform for French Public Data & ENGIE. Available at: https://opendata-renewables.engie.com/explore/?sort=modified. [Accessed on 12.11.2022].




DOI (PDF): https://doi.org/10.20508/ijrer.v15i1.16157.g9038

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is indexed in EI Compendex, SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics)and CrossRef.

IJRER has been indexed in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4