Optimization of the emitter’s bandgap and thickness of AlxGa1-xAs/ GaAs Multi-junction solar cell

Abderrahmane HEMMANI, Abdelkader NOURI, Hamid KHACHAB, Toufik ATOUANI

Abstract


In this paper an optimization model of the top cell emitter’s bandgap and thickness of AlxGa1-xAs/ GaAs Multi-Junction Solar Cell (MJSC) is treated. This study allows to enhance, after two optimization steps, efficiency energy conversion up to 24.9% compared with existing studies. This model is based on the maximization of the smallest photocurrent over two solar cell junctions of the MJSC. The efficiency is boosted due to the limitation of the different types of photons’ energy losses known in the GaAs solar cell materials.


Keywords


Multi-junction Solar Cell; Bandgap; thickness; Photocurrent; Optimization; Efficiency; AlxGa1-xAs/GaAs

Full Text:

PDF

References


M. Dhankhar, O. Pal Singh, V.N. Singh, “Physical principles of losses in thin film solar cells and efficiency enhancement methodsâ€, Renewable and Sustainable Energy Reviews, vol. 40, pp. 214-223, 2014.

T. Frijnts, S. Kühnapfel, S. Ring, O. Gabriel, S. Calnan, J. Haschke, B. Stannowski, B. Rech, R. Schlatmann, “Analysis of photo-current potentials and losses in thin film crystalline silicon solar cellsâ€, Solar Energy Materials and Solar Cells,vol.143, pp. 457-466, 2015.

M. Berginski, J. Hüpkes, A. Gordijn, W. Reetz, T. Wätjen, B. Rech, M. Wuttig, “Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cellsâ€, Solar Energy Materials and Solar Cells, vol. 92, pp. 1037-1042, 2008.

M. Limpinsel, A. Wagenpfahl, M. Mingebach, C. Deibel, and V. Dyakonov, “Photocurrent in bulk heterojunction solar cellsâ€, Phys. Rev. Vol. B 81, pp. 085203, 2010.

A. P. Kirk and M. V. Fischetti, “Fundamental limitations of hot-carrier solar cellsâ€, Phys. Rev, Vol. B 86, pp. 165206, 2012.

S. Saylan, T. Milakovich , S. Abdul Hadi, A. Nayfeh, Eugene A. Fitzgerald, Marcus S. Dahlem, “Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cellsâ€, Solar Energy, Vol. 122, pp.76–86, 2015.

M.A. Green, K. Emery, Y. Hishikawa, W. Warta,“ Solar cell efficiency tables (version 44)â€, Prog. Photovolt. Vol. 22, pp. 701-710, 2014.

H. Tan, P. Babal, M. Zeman, A. H.M. Smets,“Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solarâ€, Solar Energy Materials and Solar Cells, Vol.132, pp. 597-605, 2015.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cellsâ€, Phys. Rev. Lett, Vol. 106, pp. 028701, 2011.

S. Kim, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, M. Konagai, “Development of thin-film solar cells using solar spectrum splitting techniqueâ€, Solar Energy Materials and Solar Cells,Vol.119, pp.214–218, 2013.

R. R. King, D. Bhusari, A. Boca, D. Larrabee, X.-Q. Liu, W. Hong, C. M. Fetzer, D. C. Law, and N. H. Karam, “Band gap-voltage offset and energy production in next-generation multijunction solar cellsâ€, 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, Sep. 6-10. pp. 33-47, 2010.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP∕GaInAs∕GeGaInP∕GaInAs∕Ge multijunction solar cellsâ€,Appl Phys Lett, Vol. 90, pp. 183516, 2007.

A. Le Bris, J. Rodiere, C. Colin et al, “Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devicesâ€, IEEE Journal of Photovoltaics, Vol. 2 pp. 506-511, Oct 2012.

Goldberg Yu. A, M. Levinshtein, S. Rumyantsev and M. Shur, Handbook Series on Semiconductor Parameters, 1st ed., vol.2. London: World Scientific, 1999, pp. 1-36.

S. Adachi, “GaAs, AlAs, and Al x Ga1−x As: Material parameters for use in research and device applicationsâ€, J. Appl. Phys, Vol. 58, pp.R1-R29, 1985.

E. Lorenzo, Solar Electricity: Engineering of Photovoltaic System, 1st ed., Sevilla: Progensa, 1994, ch. 2.

J.N. Shive, The properties, physics, and design of Semiconductor Devices, Princeton, New Jersey: Van Nostrand, 1959, ch. 2.

Sarah R. Kurtz, P. Faine and J. M. Olson, “Modeling of twoâ€junction, seriesâ€connected tandem solar cells using topâ€cell thickness as an adjustable parameterâ€, J. Appl. Phys,Vol.68, pp.1890, 1990.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of Al x Ga1−x Asâ€, J. Appl. Phys, Vol. 60, pp.754-767, 1986.

J. L. Aubel, U. K. Reddy, S. Sundaram, W. T. Beard, and J. Comas, “Interband transitions in molecularâ€beamâ€epitaxial Al x Ga1−x As/GaAsâ€, J. Appl. Phys,Vol.58, pp. 495-498, 1985.

J. Zou, Y. Zhang, W. Deng, X. Peng, S. Jiang, and B. Chang, “Effects of graded band-gap structures on spectral response of AlGaAs/GaAs photocathodesâ€, Applied Optics, Vol. 54, pp. 8521-8525, 2015.

H. Urabe, M. Kuramoto, T. Nakano, A. Kawaharazuka, T. Makimoto, Y. Horikoshi, “Effects of surface barrier layer in AlGaAs/GaAs solar cellsâ€, Journal of Crystal Growth, Vol. 425, pp. 330–332, 2015.

M. Abderrezek, F. Djahli, M. Fathi, M. Ayad, “Numerical Modeling of GaAs Solar Cell Performancesâ€, Elektronika ir Elektrotechnika, Vol. 19, pp.41-44, 2013.

S. Khelifi et A. Belghachi, “Le Rôle de la Couche Fenêtre dans les Performances d’une Cellule Solaire GaAsâ€, Rev. Energ. Ren, Vol.7, pp. 13-21, 2004.




DOI (PDF): https://doi.org/10.20508/ijrer.v7i2.5165.g7026

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4