NUMERICAL EVALUATION OF SOLAR IRRADIANCE ATTENUATION FOR CONCENTRATING SOLAR POWER SYSTEMS

Abdelkader BEYOUD, Najem Hassanain, Ahmed Bouhaouss

Abstract


Aerosol Optical Depth (AOD) data analysis in relation with turbidity Linke factor and heliostat atmospheric attenuation of solar beam irradiation assessment are critical elements for suitable optimal management and sizing of energy systems installation using solar tower technology. This paper demonstrates that AOD Weibull distribution along with the Kolmogorov-Smirnov test and the coefficient of variation index is capable of describing accurately the attenuation beam solar irradiation in two timescales conditions; the regular rainfall period and the irregular one. The Weibull distribution parameters are determined based on measured tri-hourly mean aerosols optical depth data in times-series for a decade and a year. The data were collected from MACC reanalysis aerosol, at the climates under effect of Mediterranean, oceanic, continental, desert, Sahara and mountain influence of represented by Rabat, Oujda, Ouarzazate, Er-Rachidia and S'mara (Morocco). The obtained results are interpreted and an account of the major findings including prospective applications of the present study is given and discussed. It is also pointed out that this study might be generalized to the locations with similar environmental conditions.

Keywords


Attenuation solar assessment; Turbidity Linke factor; Aerosol Optical Depth; Weibull Distribution ; Solar Tower Power

Full Text:

PDF

References


F. Mavromatakis and Y. Franghiadakis. Direct and indirect determination of the linke turbidity coefficient. Solar Energy, 81(7):896–903, jul 2007.

Yousef A. Eltbaakh, M.H. Ruslan, M.A. Alghoul, M.Y. Othman, K. Sopian, and T.M. Razykov. Solar attenuation by aerosols: An overview. Renewable and Sustainable Energy Reviews, 16(6):4264–4276, aug 2012.

R MUELLER. Rethinking satellite-based solar irradiance modellingThe SOLIS clear-sky module. Remote Sensing of Environment, 91(2):160–174, may 2004.

A. Trabelsi and M. Masmoudi. An investigation of atmospheric turbidity over kerkennah island in tunisia. Atmospheric Research, 101(1-2):22–30, jul 2011.

Bo Leckner. The spectral distribution of solar radiation at the earths surfaceelements of a model. Solar Energy, 20(2):143–150, 1978.

David, A., Joseph, E., Ngwa, N. R., & Arreyndip, N. A. (2018). Global Solar Radiation of some Regions of Cameroon using the Linear Angstrom Model and Non-linear Polynomial Relations: Part 2, Sun-path Diagrams, Energy Potential Predictions and Statistical Validation. International Journal of Renewable Energy Research (IJRER), 8(1), 649-660.

Yesilbudak, M., Colak, M., & Bayindir, R. (2018). What are the Current Status and Future Prospects in Solar Irradiance and Solar Power Forecasting? International Journal of Renewable Energy Research (IJRER), 8(1), 635-648.S

Harrouni, S and Maafi, A. Classification des éclairements solaires à l’aide de l’analyse fractale. Revue Internationale des éenergies renouvelables, 5:107–122, 2002.

A Maafi and S Harrouni. Measuring the fractal dimension of solar irradiance in view of pv systems performance analysis. In World Renewable Energy Congress VI, pages 2032–2035. Elsevier, 2000.

M. Yilmaz, B. Gumus, H. Kilic et M. E. Asker, Chaotic analysis of the gloabal solar irradiance, chez 2017 {IEEE} 6th International Conference on Renewable Energy Research and Applications (ICRERA), 2017.

A Sfetsos and AH Coonick. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy, 68(2):169–178, 2000.

S Barbaro, G Cannata, S Coppolino, C Leone, and E Sinagra. Correlation between relative sunshine and state of the sky. Solar Energy, 26(6):537–550, 1981.

J Cañada. Global solar radiation in pais valenciano using sunshine hours. International journal of ambient energy, 9(4):197–202, 1988.

Christian Gueymard. Analysis of monthly average solar radiation and bright sunshine for different thresholds at cape canaveral, florida. Solar Energy, 51(2):139–145, 1993.

I. Supit and R.R. van Kappel. A simple method to estimate global radiation. Solar Energy, 63(3):147–160, sep 1998.

B. Tammelin, T. Vihma, Production of the Finnish Wind Atlas, Wind Energy, vol. 16, pp. 19-35, 12 2011.

S. AlYahya et M. A. Irfan, New solar radiation Atlas for Saudi Arabia, chez 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014.

I. Razika, I. Nabila et M. Marouane, Comparison between hybrid Weibull and MEP methods for calculating wind speed distribution, chez 2014 5th International Renewable Energy Congress (IREC), 2014.

A.N. Alias, M.Z. MatJafri, H.S. Lim, N.M. Saleh, S.H. Chumiran, and A. Mohamad. Inferring angstrom exponent and aerosol optical depth from AERONET. Journal of Environmental Science and Technology, mar 2014.

Pierre Ineichen. A broadband simplified version of the solis clear sky model. Solar Energy, aug 2008.

Pierre Ineichen. Conversion function between the linke turbidity and the atmospheric water vapor and aerosol content. Solar Energy, 82(11):1095–1097, nov 2008.

Natalie Hanrieder, Stefan Wilbert, Marion Schroedter-Homscheidt, Franziska Schnell, Diana Mancera Guevara, Reiner Buck, Stefano Giuliano, and Robert Pitz-Paal. Atmospheric extinction in simulation tools for solar tower plants. Author(s), 2017.

Jesús Polo, Jesús Ballestrn, and Elena Carra. Sensitivity study for modelling atmospheric attenuation of solar radiation with radiative transfer models and the impact in solar tower plant production. Solar Energy, sep 2016.

Abdelouahid Tahiri, Mohammed Diouri, Hanae Steli, Ibtissam Marsli, Rajae Meziane, and Abdelmoula Ben-tayeb. Desert aerosol optical properties in morocco. Environmental Sciences, 4:63–78, 2016.

N. Hanrieder, M. Sengupta, Y. Xie, S. Wilbert, and R. Pitz-Paal. Modeling beam attenuation in solar tower plants using common DNI measurements. Solar Energy, 129:244–255, may 2016.

F Wagner and AM Silva. Some considerations about ångström exponent distributions. Atmospheric Chemistry and Physics, 8(3):481–489, 2008.

K. C. Kaku, J. S. Reid, N. T. ONeill, P. K. Quinn, D. J. Coffman, and T. F. Eck. Verification and application of the extended spectral deconvolution algorithm (SDA) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer. Atmospheric Measurement Techniques, oct 2014.

V Matthias. The aerosol distribution in europe derived with the community multiscale air quality (cmaq) model: comparison to near surface in situ and sunphotometer measurements. Atmospheric Chemistry and Physics, 8(17):5077–5097, 2008.

Mian Chin, Allen Chu, Robert Levy, Lorraine Remer, Yoram Kaufman, Brent Holben, Tom Eck, Paul Ginoux, and Qingxian Gao. Aerosol distribution in the northern hemisphere during ace-asia: Results from global model, satellite observations, and sun photometer measurements. Journal of Geophysical Research: Atmospheres, 109(D23), 2004.

Mikhail D Alexandrov, Alexander Marshak, Brian Cairns, Andrew A Lacis, and Barbara E Carlson. Scaling properties of aerosol optical thickness retrieved from ground-based measurements. Journal of the atmospheric sciences, 61(9):1024–1039, 2004.

James Foster, Michael Bevis, and William Raymond. Precipitable water and the lognormal distribution. Journal of Geophysical Research: Atmospheres, 111(D15), 2006.

Youfei Zheng, Jianjun Liu, Rongjun Wu, Zhanqing Li, Biao Wang, and Takamura Tamio. Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in china. Journal of Geophysical Research: Atmospheres, 113(D16), 2008.

Oleg Dubovik, Brent Holben, Thomas F Eck, Alexander Smirnov, Yoram J Kaufman, Michael D King, Didier Tanré, and Ilya Slutsker. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3):590–608, 2002.

J Cermak and Reto Knutti. Beijing olympics as an aerosol field experiment. Geophysical Research Letters, 36(10), 2009.

O’Neill N. T., A. Ignatov, B. N. Holben, and T. F. Eck. The lognormal distribution as a reference for reporting aerosol optical depth statistics empirical tests using multi-year, multi-site AERONET sunphotometer data. Geophysical Research Letters, 27(20):3333–3336, oct 2000.

Yang Liu, Jeremy A Sarnat, Brent A Coull, Petros Koutrakis, and Daniel J Jacob. Validation of multiangle imaging spectroradiometer (misr) aerosol optical thickness measurements using aerosol robotic network (aeronet) observations over the contiguous united states. Journal of Geophysical Research: Atmospheres, 109(D6), 2004.

Wu Lin and Zeng Qing-Cun. Study on probability distributions of multi-timescale aerosol optical depth using AERONET data. Atmospheric and Oceanic Science Letters, 4(4):216–222, jan 2011.

Ahmed Ouammi, Valeria Ghigliotti, Michela Robba, Abdelaziz Mimet, and Roberto Sacile. A decision support system for the optimal exploitation of wind energy on regional scale. Renewable Energy, 37(1):299–309, jan 2012.

Michael Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet mathematics, 1(2):226–251, 2004.

Alma Riska. Aggregate matrix-analytic techniques and their applications. 2002.

M. Geiger, L. Diabaté, L. Ménard, and L. Wald. A web service for controlling the quality of measurements of global solar irradiation. Solar Energy, 73(6):475–480, dec 2002.

F.B. Amar, M. Elamouri. A New theoretical model for modeling the wind speed frequency distribution. International Journal of Renewable Energy Research, 1(4):306-313, 2012.

S. Han et H. W. Shin, «Policy trends of renewable energy in Korea,» chez 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014.

F. Viola, P. Romano, R. Miceli, D. L. Cascia, M. Longo et G. Sauba, Economical evaluation of ecological benefits of the demand side management, chez 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014.




DOI (PDF): https://doi.org/10.20508/ijrer.v8i3.7854.g7486

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4