Optimal scheduling of hydrothermal system considering different Environmental Emissions using NSTLBO approach
Abstract
Keywords
Full Text:
PDFReferences
Zahavi, J., & Eisenberg, L. (1975). Economic-enviromental power dispatch. IEEE Transactions on Systems, Man, and Cybernetics, (5), 485-489.
Nanda, J., Kothari, D. P., & Lingamurthy, K. S. (1988). Economic-emission load dispatch through goal programming techniques. IEEE Transactions on Energy Conversion, 3(1), 26-32.
Dhillon, J. S., & Kothari, D. P. (2000). The surrogate worth trade-off approach for multiobjective thermal power dispatch problem. Electric Power Systems Research, 56(2), 103-110.
Sasikala, J., & Ramaswamy, M. (2012). PSO based economic emission dispatch for fixed head hydrothermal systems. Electrical Engineering, 94(4), 233-239.
Talaq, J. H., El-Hawary, F., & El-Hawary, M. E. (1994). A summary of environmental/economic dispatch algorithms. IEEE Transactions on Power Systems, 9(3), 1508-1516.
Wood, A. J., & Wollenberg, B. F. (2012). Power generation, operation, and control. John Wiley & Sons.
Rashid, A. H. A., & Nor, K. M. (1991). An efficient method for optimal scheduling of fixed head hydro and thermal plants. IEEE Transactions on Power Systems, 6(2), 632-636.
Jin-Shyr, Y., & Nanming, C. (1989). Short term hydrothermal coordination using multi-pass dynamic programming. IEEE Transactions on Power Systems, 4(3), 1050-1056.
Salam, M. S., Nor, K. M., & Hamdam, A. R. (1998). Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Transactions on Power Systems, 13(1), 226-235.
Li, C. A., Svoboda, A. J., Tseng, C. L., Johnson, R. B., & Hsu, E. (1997). Hydro unit commitment in hydro-thermal optimization. IEEE Transactions on Power Systems, 12(2), 764-769.
Agarwal, S. K. (1973, June). Optimal stochastic scheduling of hydrothermal systems. In Proceedings of the Institution of Electrical Engineers (Vol. 120, No. 6, pp. 674-678). IET Digital Library.
Nanda, J., Bijwe, P. R., & Kothari, D. P. (1986). Application of progressive optimality algorithm to optimal hydrothermal scheduling considering deterministic and stochastic data. International Journal of Electrical Power & Energy Systems, 8(1), 61-64.
Dhillon, J. S., Parti, S. C., & Kothari, D. P. (2002). Fuzzy decision-making in stochastic multiobjective short-term hydrothermal scheduling. IEE Proceedings-Generation, Transmission and Distribution, 149(2), 191-200.
Dhillon, J. S., Parti, S. C., & Kothari, D. P. (2001). Fuzzy decision making in multiobjective long-term scheduling of hydrothermal system. International Journal of Electrical Power & Energy Systems, 23(1), 19-29.
Benhamida, F., & Belhachem, R. (2013). Dynamic constrained economic/emission dispatch scheduling using neural network. Advances in Electrical and Electronic Engineering, 11(1), 1-9.
Dieu, V. N., & Ongsakul, W. (2005, June). Hopfield Lagrange for short-term hydrothermal scheduling. In Power Tech, 2005 IEEE Russia (pp. 1-7). IEEE.
Dhillon, J. S., Dhillon, J. S., & Kothari, D. P. (2011). Real coded genetic algorithm for stochastic hydrothermal generation scheduling. Journal of Systems Science and Systems Engineering, 20(1), 87-109.
Narang, N., Dhillon, J. S., & Kothari, D. P. (2012). Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method. Energy, 47(1), 237-252.
Umayal, S. P., & Kamaraj, N. (2005, December). Stochastic multi objective short term hydrothermal scheduling using particle swarm optimization. In INDICON, 2005 Annual IEEE(pp. 497-501). IEEE.
Zhou, J., Liao, X., Ouyang, S., Zhang, R., & Zhang, Y. (2014). Multi-objective artificial bee colony algorithm for short-term scheduling of hydrothermal system. International Journal of Electrical Power & Energy Systems, 55, 542-553.
Zhang, H., Zhou, J., Zhang, Y., Fang, N., & Zhang, R. (2013). Short term hydrothermal scheduling using multi-objective differential evolution with three chaotic sequences. International Journal of Electrical Power & Energy Systems, 47, 85-99.
Basu, M. (2011). Economic environmental dispatch of fixed head hydrothermal power systems using nondominated sorting genetic algorithm-II. Applied Soft Computing, 11(3), 3046-3055.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.
Cagnina, L., Esquivel, S. C., & Coello Coello, C. (2005). A particle swarm optimizer for multi-objective optimization. Journal of Computer Science & Technology, 5.
Xue, F., Sanderson, A. C., & Graves, R. J. (2003, December). Pareto-based multi-objective differential evolution. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress on (Vol. 2, pp. 862-869). IEEE.
Nadakuditi, G., Sharma, V., & Naresh, R. (2016). Non-dominated sorting disruption-based gravitational search algorithm with mutation scheme for multi-objective short-term hydrothermal scheduling. Electric Power Components and Systems, 44(9), 990-1004.
Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2016). Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index. Renewable Energy, 99, 18-34.
Wu, X. Y., Cheng, C. T., Shen, J. J., Luo, B., Liao, S. L., & Li, G. (2015). A multi-objective short term hydropower scheduling model for peak shaving. International Journal of Electrical Power & Energy Systems, 68, 278-293.
Norouzi, M. R., Ahmadi, A., Sharaf, A. M., & Nezhad, A. E. (2014). Short-term environmental/economic hydrothermal scheduling. Electric Power Systems Research, 116, 117-127.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i4.8283.g7500
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is indexed in EI Compendex, SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics)and CrossRef.
IJRER has been indexed in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4