A PVT Cooling System Design and Realization: Temperature Effect on the PV Module Performance Under Real Operating Conditions

Charaf HAJJAJ, Mohammadi Benhmida, Rachid Bendaoud, Houssam Amiry, Said Bounouar, Abdellatif Ghennioui, Fatima Chanaa, Said Yadir, Ahmed Elhassnaoui, Hassan Ezzaki

Abstract


It is established that the efficiency of the most common solar cells decreases when their temperature increases. The photovoltaic module characteristics, especially its efficiency and its maximum power, are defined in standard test conditions (STC), while their nominal operating temperature is higher than ambient temperature and depending on operating conditions of the photovoltaic module. Thus, it is important to characterize the photovoltaic module performance under real operating conditions and for different temperature values.  This study involves the design and realization of a cooling system of a monocrystalline photovoltaic module by a sheet of water circulating on its backside, while keeping its temperature values 2 to 3 degrees higher than the cooling water temperature. This system is investigated numerically to determine the configuration enabling a good control of the temperature on photovoltaic module surface. The realized and described hybrid system in this paper was intended to validate results of the optimal configuration obtained by simulation based on finite element method. The extraction and comparison of physical parameters of the cooled photovoltaic module with those of a similar reference module without cooling system are described.

Keywords


Heat transfer; Hybrid Photovoltaic-Thermal collector (PVT); Photovoltaic cell efficiency

Full Text:

PDF

References


Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol Energy 2009;83:614–24.

Hazi A, Hazi G, Grigore R, Vernica S. Opportunity to use PVT systems for water heating in industry. Appl Therm Eng 2014;63:151–7.

Ziapour BM, Palideh V, Mokhtari F. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers. Appl Therm Eng 2016;94:341–9.

Dupeyrat P, Ménézo C, Fortuin S. Study of the thermal and electrical performances of PVT solar hot water system. Energy Build 2014;68:751–5.

Chow TT, He W, Ji J. An experimental study of façade-integrated photovoltaic/water-heating system. Appl Therm Eng 2007;27:37–45.

Shi Q, Lv J, Guo C, Zheng B. Experimental and simulation analysis of a PV/T system under the pattern of natural circulation. Appl Therm Eng 2017;121:828–37.

Hajjaj C, Amiry H, Bendaoud R, Yadir S, Elhassnaoui A, Sahnoun S, et al. Design of a new photovoltaic panel cooling system to optimize its electrical efficiency, IEEE; 2016, p. 623–627. doi:10.1109/IRSEC.2016.7983939.

Sathe TM, Dhoble AS. A review on recent advancements in photovoltaic thermal techniques. Renew Sustain Energy Rev 2017;76:645–72. doi:10.1016/j.rser.2017.03.075.

Preet S. Water and phase change material based photovoltaic thermal management systems: A review. Renew Sustain Energy Rev 2018;82:791–807. doi:10.1016/j.rser.2017.09.021.

Alobaid M, Hughes B, Calautit JK, O’Connor D, Heyes A. A review of solar driven absorption cooling with photovoltaic thermal systems. Renew Sustain Energy Rev 2017;76:728–42. doi:10.1016/j.rser.2017.03.081.

Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renew Sustain Energy Rev 2017;77:109–30. doi:10.1016/j.rser.2017.03.126.

Brahim T, Jemni A. Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Sol Energy 2017;153:540–61. doi:10.1016/j.solener.2017.05.081.

Elbreki AM, Alghoul MA, Sopian K, Hussein T. Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution. Renew Sustain Energy Rev 2017;69:961–1017. doi:10.1016/j.rser.2016.09.054.

Good C. Environmental impact assessments of hybrid photovoltaic–thermal (PV/T) systems – A review. Renew Sustain Energy Rev 2016;55:234–9. doi:10.1016/j.rser.2015.10.156.

Lamnatou C, Chemisana D. Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues. Renew Energy 2017;105:270–87. doi:10.1016/j.renene.2016.12.009.

Siecker J, Kusakana K, Numbi BP. A review of solar photovoltaic systems cooling technologies. Renew Sustain Energy Rev 2017;79:192–203. doi:10.1016/j.rser.2017.05.053.

Simms S, Dorville J-F. Thermal performance of a hybrid photovoltaic-thermal collector with a modified absorber. 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA, Palermo, Italy: IEEE; 2015, p. 600–5. doi:10.1109/ICRERA.2015.7418484.

Tripanagnostopoulos Y, Nousia TH, Souliotis M, Yianoulis P. Hybrid photovoltaic/thermal solar systems. Sol Energy 2002;72:217–234.

Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl Energy 2009;86:310–6.

Yang DJ, Yuan ZF, Lee PH, Yin HM. Simulation and experimental validation of heat transfer in a novel hybrid solar panel. Int J Heat Mass Transf 2012;55:1076–82.

Rossi C, Tagliafico LA, Scarpa F, Bianco V. Experimental and numerical results from hybrid retrofitted photovoltaic panels. Energy Convers Manag 2013;76:634–44.

Michael JJ, S I, Goic R. Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide. Renew Sustain Energy Rev 2015;51:62–88.

Liang R, Zhang J, Ma L, Li Y. Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study. Appl Therm Eng 2015;75:487–92.

Fayaz H, Nasrin R, Rahim NA, Hasanuzzaman M. Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Sol Energy 2018;169:217–30. doi:10.1016/j.solener.2018.05.004.

Andreas W. Photovoltaik Engineering Handbuch für Planung, Entwicklung und Anwendung. Berlin Heidelberg New York: Springer-Verlag Berlin Heidelberg; 2006.

Ortizconde A, Garciasanchez F, Muci J. New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics. Sol Energy Mater Sol Cells 2006;90:352–61.

Amiry H, Benhmida M, Bendaoud R, Hajjaj C, Bounouar S, Yadir S, et al. Design and implementation of a photovoltaic I-V curve tracer: Solar modules characterization under real operating conditions. Energy Convers Manag 2018;169:206–16. doi:10.1016/j.enconman.2018.05.046.

Al-Hajj R, Assi A, Fouad MM. A predictive evaluation of global solar radiation using recurrent neural models and weather data. 2017 IEEE 6th Int. Conf. Renew. Energy Res. Appl. ICRERA, San Diego, CA: IEEE; 2017, p. 195–9. doi:10.1109/ICRERA.2017.8191265.

Demirtas M, Yesilbudak M, Sagiroglu S, Colak I. Prediction of solar radiation using meteorological data. 2012 Int. Conf. Renew. Energy Res. Appl. ICRERA, Nagasaki, Japan: IEEE; 2012, p. 1–4. doi:10.1109/ICRERA.2012.6477329.

Amiry H, Bendaoud R, Hajjaj C, Bounouar S, Yadir S, Rais K, et al. Temperature influence on performance of a solar cell receiving direct sunlight and a halogen lamp irradiation. IEEE Publ 2016:218–21.

Armstrong S, Hurley WG. Response to comments by E. Sartori on “A thermal model for PV panels under varying atmospheric conditionsâ€, by S. Armstrong and WG Hurley, Applied Thermal Engineering 30, 1388–1395 (2010). Appl Therm Eng 2011;31:402.

Chanaa F, Bendaoud R, Bounouar S, Hajjaj C, El-abidi A, Ezzaki H, et al. Design and Experimental Study of an Implemented Solar Air Heater Destined for Red Algae Drying. Int J Renew ENERGY Res 2018:2266–74.

McAdams WH. Heat Transmission. New York: 1954.

Naewngerndee R, Hattha E, Chumpolrat K, Sangkapes T, Phongsitong J, Jaikla S. Finite element method for computational fluid dynamics to design photovoltaic thermal (PV/T) system configuration. Sol Energy Mater Sol Cells 2011;95:390–3.

Luque A, Hegedus S, editors. Handbook of photovoltaic science and engineering. 2nd ed. Chichester, West Sussex, U.K: Wiley; 2011.

Abdelhakim B, Ilhami C, Korhan K. Modeling and simulation of thermo electrical generator with MPPT. 2017 IEEE 6th Int. Conf. Renew. Energy Res. Appl. ICRERA, San Diego, CA, USA: IEEE; 2018, p. 855–66. doi:10.1109/ICRERA.2017.8191181.

Sera D, Teodorescu R, Rodriguez P. PV panel model based on datasheet values. IEEE Int. Symp. Ind. Electron., 2007, p. 2392–2396. doi:10.1109/ISIE.2007.4374981.

Kajihara A, Harakawa T. Model of photovoltaic cell circuits under partial shading 2005.

Benavides ND, Chapman PL. Modeling the effect of voltage ripple on the power output of photovoltaic modules. IEEE Trans Ind Electron 2008;55:2638–43.

De Soto W, Sa K, Wa B. Improvement and validation of a model for photovoltaic array performance 2006.

Arivuselvam L, Sakthi D, Sakthivel P, Anbarasan PM, Aroulmoji V. Irradiance Dependence on Performance of Dye Sensitized and V-Grooved Silicon Solar Cells. Int J Adv Sci Eng 2014;1:18–26.

Wurefl P. Physics of Solar Cells: From Principles to New Concepts. 2005.

Singh P, Ravindra NM. Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells 2012;101:36–45.

de la Parra I, Muñoz M, Lorenzo E, García M, Marcos J, Martínez-Moreno F. PV performance modelling: A review in the light of quality assurance for large PV plants. Renew Sustain Energy Rev 2017;78:780–97. doi:10.1016/j.rser.2017.04.080.

Hajjaj C, Alami Merrouni A, Bouaichi A, Benhmida M, Sahnoun S, Ghennioui A, et al. Evaluation, comparison and experimental validation of different PV power prediction models under semi-arid climate. Energy Convers Manag 2018;173:476–88. doi:10.1016/j.enconman.2018.07.094.

Hajjaj C, Benhmida M, Sahnoun S, Merrouni AA, Ghennioui A, Benlarabi A, et al. A comparative study of PV modules performance between prediction models and experience in the Green Energy Park: crystalline technology n.d.:4.

Hajjaj C, Zitouni H, Merrouni AA, Bouaichi A, Benhmida M, Ikken B, et al. Evaluation of Different PV Prediction Models. Comparison and Experimental Validation with One-Year Measurements at Ground Level. In: Tina GM, editor. Proc. 1st Int. Conf. Electron. Eng. Renew. Energy, vol. 519, Singapore: Springer Singapore; 2019, p. 617–22. doi:10.1007/978-981-13-1405-6_70.

Charaf H. Experimental Validation of Non-Linear Empirical Model to Simulate the Photovoltaic Production Under Semi-Arid Climate. Case Study of Benguerir, Morocco. IEEE Publ 2018:1–5.

Al-Shohani WAM, Al-Dadah R, Mahmoud S, Algareu A. Performance of a V-trough photovoltaic system. 2016 IEEE Int. Conf. Renew. Energy Res. Appl. ICRERA, Birmingham, United Kingdom: IEEE; 2016, p. 946–51. doi:10.1109/ICRERA.2016.7884474.

Bendaoud R, Yadir S, Hajjaj C, Errami Y, Sahnoun S, Benhmida M, et al. Validation of a multi-exponential alternative model of solar cell and comparison to conventional double exponential model. IEEE Publ n.d.:319–22.

Arjyadhara1 P, S.M2 A, Chitralekha3 JC. Analysis of Solar PV cell Performance with Changing Irradiance and Temperature. Int J Eng Comput Sci 2013:214–20.

Singh P, Singh S, Lal M, Husain M. Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Sol Energy Mater Sol Cells 2008;92:1611–6.

Stirn RJ. Junction characteristics of silicon solar cells, 1972, p. 72–82. doi:19730029409.

Wen C, Fu C, Tang J, Liu D, Hu S, Xing Z. The influence of environment temperatures on single crystalline and polycrystalline silicon solar cell performance. Sci China Phys Mech Astron 2012;55:235–41. doi:10.1007/s11433-011-4619-z.

Chander S, Purohit A, Sharma A, Nehra SP, Dhaka MS. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells. Energy Rep 2015;1:175–80. doi:10.1016/j.egyr.2015.09.001.

Chander S, Purohit A, Sharma A, Arvind, Nehra SP, Dhaka MS. A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep 2015;1:104–9. doi:10.1016/j.egyr.2015.03.004.




DOI (PDF): https://doi.org/10.20508/ijrer.v9i1.8789.g7598

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4