THERMAL ENERGY GENERATION FROM A SOLAR COLLECTOR PARABOLIC DISH REFLECTOR

Pino Durán Medina, Juan Gabriel Barbosa Saldaña, Claudia del Carmen Gutiérrez Torres, Pedro Quinto Diez, Luis Alfonso Moreno Pacheco

Abstract


A prototype of a small modularity parabolic dish reflector or PDR solar collector with two-axis solar tracking system was designed and built at the National Polytechnic Institute (IPN) in México. The purpose is to generate high temperature thermal energy for application in services of small and medium industry as well as domestic uses. The solar tracking in two-axis was developed based on angular relationships and a control system with proportional-integral action so that even when there is an obstruction of solar radiation either by cloud cover, buildings, trees or any other object that generates shade, the collector remains oriented towards the Sun. For operating and monitoring the prototype, a flow control module and a human machine interface or HMI were developed and implemented, allowing by means of a computer interface, the monitoring of solar radiation, temperature for thermal evaluation. The experimental data obtained indicated that the prototype can generate 30 kg of steam saturated starting from water at an ambient temperature of 298 K.

Keywords


Collector; dish; energy; parabolic; PDR; solar; thermal; tracking

Full Text:

PDF

References


P. N. Patil et al., “Automatic Dual-axis Solar Tracking System for Parabolic dishâ€, Proceeding IEEE - 2nd Int. Conf. Adv. Electr. Electron. Information, Commun. Bio-Informatics, IEEE - AEEICB 2016, pp. 699–703, 2016.

A. El Fadar, “Automation of a solar adsorption refrigeration systemâ€, Proc. 2013 Int. Renew. Sustain. Energy Conf. IRSEC 2013, pp. 118–122, 2013.

S. Kalogirou, Solar Energy Collectors, 1st ed., Academic Press, 2009, pp. 121-150.

M. A. Sodestrand, “Mini-Dish Based Hybrid Concentrated Solar Power (CSP) System for Home Useâ€, IEEE 56th International Midwest Symp. Circuits Syst., pp. 689-692, 2013.

E. Venegas, “Sistema para generación y almacenamiento de calor de proceso mediante un concentrador solar de foco puntual (cospaa-90)â€, Centro de Investigación Eléctrica, UNAM, Morelos, Mexico, 2008.

Y. Goswami, Solar Thermal Power, 3rd ed., CRC Press, 2015, pp. 442-450.

P. Durán, “Concentrador Solar PDR con Seguimiento Solarâ€, ECORFAN Revista de Aplicaciones de la Ingeniería, vol 3(9), pp. 98-108. 2016.

J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes, 3rd ed., John Wiley & Sons, Inc., 2009, pp. 336

W. Stine, Solar Energy Fundamentals and Design with Computer Applications, 1st ed., John Wiley & Sons, Inc. 1985.

P. Durán, “Diseño y construcción de un prototipo de concentrador solar parabólico de disco reflector para generación de energía térmicaâ€, Sección de Estudios de Posgrado e Investigación, ESIME Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico, 2012.

A. A. Sagade and N. N. Shinde, “Experimental analysis of effect of variation of convection heat losses on performance of parabolic dish collector with nickel chrome coated receiverâ€, 2011 World Congr. Sustain. Technol., pp. 107–111, 2011.

S. Wieder, Radiative emission from the Sun, An introduction to solar energy for Scientists and Engineers, 1st ed., John Wiley & Sons, Inc. 1982.

M. A. Solorzano, “Control y monitoreo de un prototipo de concentrador solar de disco parabólico reflector para la generación de energía térmicaâ€, Sección de Estudios de Posgrado e Investigación, ESIME Zacatenco, Instituto Politécnico Nacional, Mexico City, México, 2017.

D. Erbs, “Estimation of the diffuse radiation fraction for hourly, daily, and montly-average global radiationâ€, Solar Energy, vol. 28, no. 4, pp. 278-293, 1982.




DOI (PDF): https://doi.org/10.20508/ijrer.v9i3.9383.g7736

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4