Fluid Flow and Convective Heat Transfer Analysis on a Rotor of Wind Turbine Alternator with an Impinging Jet.

Chadia Haidar, Rachid Boutarfa, Souad Harmand

Abstract


This work presents a numerical and experimental study of convection heat transfer in the unconfined air gap of a discoidal technology rotor-stator system. In particular, the rotor is cooled here by an eccentric air jet impingement. The cavity is characterized by a dimensionless spacing G = 0.02 and a low aspect ratio for the jet H/D= 0.25. the rotational Reynolds numbers from 2.38*10^5 to 5.44*10^5 and the jet Reynolds number between 16.5*10^3 and 49.5*10^3 are used. The experimental technique is based on using infrared thermography to access the rotor surface temperature measurement, and on the numerical resolution of the energy equation at steady state to evaluate the local convective coefficient. The numerical study is based on the turbulence model RSM (Reynolds Stress Model). The results of this study are described in terms of radial distributions of the mean velocity components, Reynolds stress tensor components and corresponding local and mean Nusselt numbers. Three flow regions have been identified: a region dominated by the air jet, a mixed zone at low radii and a zone dominated by outward rotation. A good agreement between the two approaches has been obtained, which confirms our choice of numerical turbulence model.


Keywords


energy;renewable energy;wind energy

Full Text:

PDF

References


V. Okinda and N. O. Abungu, “Modelling Simulation and Optimal Sizing of a Hybrid Wind, Solar PV Power System in Northern Kenya,†Int. J. Renew. Energy Res., 2016.

A. Bianchini, F. Donini, M. Pellegrini, and C. Saccani, “Techno-economic analysis of different plant configuration for thermoelectric cogeneration from biomass boiler,†Int. J. Renew. Energy Res., vol. 6, no. 4, pp. 1565–1573, 2016.

V. S. Fuentes, C. Troya, G. Moreno, and J. Molina, “Airfoil Selection Methodology for Small Wind Turbines,†Int. J. Renew. Energy Res., vol. 6, no. 4, pp. 1410–1415, 2016.

S. Goldstein, “On the Resistance to the Rotation of a Disc Immersed in a Fluid,†in Proc.cambridge Phil .Soc, 1935, vol. 31, no. 2, pp. 232–241.

E. C. Cobb and O. A. Saunders, “Heat transfer from a rotating disk,†Proc. R. Soc. Lond. A, vol. 236, no. 1206, pp. 343–351, 1956.

L. A. Dorfman, “Hydrodynamic resistance and heat loss of rotating solids, 1963 (Oliver and Boyd, Edinburgh),†Google Sch.

M. Angioletti, R. M. Di Tommaso, E. Nino, and G. Ruocco, “Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets,†Int. J. Heat Mass Transf., vol. 46, pp. 1703–1713, 2003.

Y.-M. Chen, W.-T. Lee, and S.-J. Wu, “Heat (mass) transfer between an impinging jet and a rotating disk,†Heat mass Transf., vol. 34, no. 2–3, pp. 195–201, 1998.

J. M. Owen and R. H. Rogers, “Flow and heat transfer in rotating-disc systems,†1989.

C. O. Popiel and L. Boguslawski, “Local heat transfer coefficients on the rotating disk in still air,†Int. J. Heat Mass Transf., vol. 18, pp. 167–170, 2005.

G. K. Batchelor, “Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow,†Q. J. Mech. Appl. Math., vol. 4, no. 1, pp. 29–41, 1951.

K. Stewartson, “On the flow between two rotating coaxial disks,†in Mathematical Proceedings of the Cambridge Philosophical Society, 1953, vol. 49, no. 2, pp. 333–341.

J. W. Daily and R. E. Nece, “Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks,†J.basic Eng., vol. 82, no. 1, pp. 217–230, 1960.

J. Pellé and S. Harmand, “Heat transfer study in a rotor-stator system air-gap with an axial inflow,†Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1532–1543, 2009.

T. D. Nguyen, J. Pellé, S. Harmand, and S. Poncet, “PIV measurements of an air jet impinging on an open rotor-stator system,†Exp. Fluids, vol. 53, no. 2, pp. 401–412, 2012.

S. Poncet et al., “Turbulent impinging jet flow into an unshrouded rotor–stator system: Hydrodynamics and heat transfer,†Int. J. Heat Fluid Flow, vol. 44, pp. 719–734, 2013.

D. Lytle and B. W. Webb, “Air jet impingement heat transfer at low nozzle-plate spacings,†Int. J. Heat Mass Transf., vol. 37, no. 12, pp. 1687–1697, 1994.

G. Ritoux, “Evaluation numérique des facteurs de forme,†Rev. Phys. appliquée, vol. 17, no. 8, pp. 503–515, 1982.

A. Fluent, “12.0 Theory Guide,†Ansys Inc, vol. 5, no. 5, 2009.

A. Zeghib, “Comparaison des différents modèles de turbulence d’un écoulement aérodynamique dans un cyclone,†2008.

M. M. Gibson and B. E. Launder, “Ground effects on pressure fluctuations in the atmospheric boundary layer,†J. Fluid Mech., vol. 86, no. 3, pp. 491–511, 1978.

J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows,†Numer. heat Transf., vol. 7, no. 2, pp. 147–163, 1984.

S. Patankar, Numerical heat transfer and fluid flow. CRC press, 1980.

J. Pellé, “Etude expérimentale des échanges convectifs sur le rotor d’une machine discoïde: influence d’un jet impactant.†Valenciennes, 2006.




DOI (PDF): https://doi.org/10.20508/ijrer.v9i3.9471.g7692

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4