Evaluation of Sugar Beet Waste in the Production of Hydrogen-Rich Gas

Nezihe -- Ayas, Alattin Çakan, Burcu Kiren, Fatma Duran, Barış Çınar

Abstract


Among renewable energy sources, biomass is increasingly gaining tremendous attention due to its feedstock diversity and the way for management. The objective of this work is to explore the potential of the pulp, which is the waste of the sugar factory, as an alternative energy for conventional energy sources through gasification technologies. Dry air was used as an oxidizing agent for the production of producer gas. Gasification experiments were carried out using different operating parameters including various temperatures (650 °C, 750 °C and 850 °C), without catalyst and with alkali catalysts (K2CO3, Na2CO3). The producer gas generated from the gasification process was identified through Micro Gas Chromatography (μ-GC) system. From the results obtained, the highest hydrogen yield is found to be 5.730 mol H2/kg biomass in the absence of a catalyst, at 850 °C with 2 L/h dry air flow rate and 15 min. reaction time. Besides, it also revealed that K2CO3 is more effective than Na2CO3,and the maximum hydrogen yield (5.199 mol H2/kg biomass) was achieved when K2CO3 used at 650 °C with 2 L/h dry air flow rate and 15 min. reaction time.

Keywords


Sugar beet; waste material; gasification; hydrogen; alkali catalyst;renewable energy

Full Text:

PDF

References


British Petroleum, “BP Statistical Review of World Energy 2017â€, Br. Pet., no. 66, pp. 1–52, 2017.

A. Effendi, H. Gerhauser, and A. V. Bridgwater, “Production of renewable phenolic resins by thermochemical conversion of biomass: A reviewâ€, Renew. Sustain. Energy Rev., DOI: 10.1016/j.rser.2007.04.008, vol. 12, no. 8, pp. 2092–2116, 2008.

M. R. Al Mamun and S. Torii, “Anaerobic co-digestion of cafeteria, vegetable and fruit wastes for biogas productionâ€, 3rd Int. Conf. Renew. Energy Res. Appl. ICRERA 2014, DOI: 10.1109/ICRERA.2014.7016412, no. 2, pp. 369–374, 2014.

P. A. Owusu and S. Asumadu-Sarkodie, “A review of renewable energy sources, sustainability issues and climate change mitigationâ€, Cogent Eng., DOI: 10.1080/23311916.2016.1167990, vol. 3, no. 1, pp. 1–14, 2016.

S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean developmentâ€, Renew. Sustain. Energy Rev., DOI: 10.1016/j.rser.2015.12.112, vol. 57, pp. 850–866, 2016.

H. Wendt and G. H. Bauer, Hydrogen as an Energy Carrier: Technologies, Systems, Economy, New York: Springer-Verlag, 1988, ch. 7.

I. Dincer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainabilityâ€, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2014.12.035, vol. 40, no. 34, pp. 11094–11111, 2014.

O. Bendaikha and S. Larbi, “Hydrogen production system analysis using direct photo-electrolysis process in Algeriaâ€, Proc. 2013 Int. Conf. Renew. Energy Res. Appl. ICRERA 2013, DOI: 10.1109/ICRERA.2013.6749921, no. October, pp. 1123–1128, 2013.

O. Bilgin, “Evaluation of hydrogen energy production of mining waste waters and poolsâ€, 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, DOI: 10.1109/ICRERA.2015.7418475, pp. 557–561, 2015.

E. R. Widjaya, G. Chen, L. Bowtell, and C. Hills, “Gasification of non-woody biomass: A literature reviewâ€, Renew. Sustain. Energy Rev., DOI: 10.1016/j.rser.2018.03.023, vol. 89, no. September 2016, pp. 184–193, 2018.

N. Radenahmad, I. S. A. Rahman, N. A. H. Morni, and A. K. Azad, “Acacia-Polyethylene Terephthalate Co- Gasification as Renewable Energy Resourceâ€, Int. J. Renew. Energy Res., vol. 8, no. 3, pp. 1612–1620, 2018.

P. Basu, Biomass gasification and pyrolysis: Practical design and theory, 1st ed., Academic Press., 2010, pp.117-165.

O. Nakagoe, Y. Furukawa, S. Tanabe, Y. Sugai, and R. Narikiyo, “Hydrogen production from steam reforming of woody biomass with cobalt catalystâ€, 2012 Int. Conf. Renew. Energy Res. Appl. ICRERA, 2012, DOI: 10.1109/ICRERA.2012.6477356, pp. 2–5, 2012.

M. Aziz, T. Oda, and T. Kashiwagi, “Novel power generation from microalgae: Application of different gasification technologiesâ€, 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, DOI: 10.1109/ICRERA.2015.741851, vol. 5, pp. 745–749, 2015.

R. M. Esfahani, W. A. Wan Ab Karim Ghani, M. A. Mohd Salleh, and S. Ali, “Hydrogen-rich gas production from palm kernel shell by applying air gasification in fluidized bed reactorâ€, Energy and Fuels, DOI: 10.1021/ef2010892, vol. 26, no. 2, pp. 1185–1191, 2012.

R. Bott, Solid Biofuels for Energy Systems, London: Springer- Verlag, 2014, ch.7.

K. Karakus, Y. Birbilen, and F. Mengeloǧlu, “Assessment of selected properties of LDPE composites reinforced with sugar beet pulpâ€, Meas. J. Int. Meas. Confed., DOI: 10.1016/j.measurement.2016.03.039, vol. 88, pp. 137–146, 2016.

Agribusiness Handbooks, vol. 4: Sugar Beets/White Sugar. 1999.

P. Kelly, “Sugar beet pulp - a reviewâ€, Anim. Feed Sci. Technol., vol. 8, pp. 1–18, 1983.

X. Huang, D. Li, and L. Jun Wang, “Characterization of pectin extracted from sugar beet pulp under different drying conditionsâ€, J. Food Eng., DOI: 10.1016/j.jfoodeng.2017.04.022, vol. 211, pp. 1–6, 2017.

X. Huang, D. Li, and L. Jun Wang, “Effect of particle size of sugar beet pulp on the extraction and property of pectinâ€, J. Food Eng., DOI: 10.1016/j.jfoodeng.2017.09.001, vol. 218, pp. 44–49, 2018.

M. Yilgin, N. Deveci Duranay, and D. Pehlivan, “Co-pyrolysis of lignite and sugar beet pulpâ€, Energy Convers. Manag., DOI: 10.1016/j.enconman.2009.12.010, vol. 51, no. 5, pp. 1060–1064, 2010.

K. ZiemiÅ„ski, I. Romanowska, M. Kowalska-Wentel, and M. Cyran, “Effects of hydrothermal pretreatment of sugar beet pulp for methane productionâ€, Bioresour. Technol., DOI: 10.1016/j.biortech.2014.05.021, vol. 166, pp. 187–193, 2014.

C. Bellido, C. Infante, M. Coca, G. González-Benito, S. Lucas, and M. T. García-Cubero, “Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulpâ€, Bioresour. Technol., DOI: 10.1016/j.biortech.2015.04.082, vol. 190, pp. 332–338, 2015.

R. Kothari, D. Buddhi, and R. L. Sawhney, “Comparison of environmental and economic aspects of various hydrogen production methodsâ€, Renew. Sustain. Energy Rev., DOI: 10.1016/j.rser.2006.07.012, vol. 12, no. 2, pp. 553–563, 2008.

E. Shayan, V. Zare, and I. Mirzaee, “Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agentsâ€, Energy Convers. Manag., DOI: 10.1016/j.enconman.2017.12.096, vol. 159, no. December 2017, pp. 30–41, 2018.

S. Li, S. Xu, S. Liu, C. Yang, and Q. Lu, “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gasâ€, Fuel Process. Technol., DOI: 10.1016/j.fuproc.2003.11.043, vol. 85, no. 8–10, pp. 1201–1211, 2004.

Y. F. Demiral, “DoÄŸal ve Modifiye EdilmiÅŸ Åžeker Pancarı Küspesi ve Pülpü Kullanılarak Sulu Çözeltilerden Cr(Vi) Iyonlarının UzaklaÅŸtırılmasıâ€, Osmangazi University, 2012.

S. A. Ashter, “Biomass and its sourcesâ€, Technol. Appl. Polym. Deriv. from Biomass, DOI: 10.1016/B978-0-323-51115-5.00002-5, pp. 11–36, 2018.

W. X. Peng, S. B. Ge, A. G. Ebadi, H. Hisoriev, and M. J. Esfahani, “Syngas production by catalytic co-gasification of coal-biomass blends in a circulating fluidized bed gasifierâ€, J. Clean. Prod., DOI: 10.1016/j.jclepro.2017.06.233, vol. 168, pp. 1513–1517, 2017.

N. Ayas and T. Esen, “Hydrogen production from tea wasteâ€, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2015.09.156, vol. 41, no. 19, pp. 8067–8072, 2016.

S. Karadeniz and N. Ayas, “Effect of Reaction Time and Air Flow Rate on the Yield of Hydrogen Obtained from the Gasification of Tobacco Wasteâ€, J. Clean Energy Technol., DOI: 10.18178/JOCET.2018.6.5.491, vol. 6, no. 5, pp. 366–370, 2018.

P. M. Lv, “An experimental study on biomass air – steam gasification in a fluidized bedâ€, Bioresour. Technol., DOI: 10.1016/j.biortech.2004.02.003, vol. 95, pp. 95–101, 2004.

D. Elif and A. Nezihe, “Hydrogen production by supercritical water gasification of fruit pulp in the presence of Ru / Câ€, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2015.12.005, vol. 41, no. 19, pp. 8073–8083, 2015.

D. A. Bulushev and J. R. H. Ross, “Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A reviewâ€, Catalysis Today, DOI: 10.1016/j.cattod.2011.02.005, vol. 171, pp. 1–13, 2011.

M. A. Hamad, A. M. Radwan, D. A. Heggo, and T. Moustafa, “Hydrogen rich gas production from catalytic gasification of biomassâ€, Int. J. Renewable Energy, DOI: 10.1016/j.renene.2015.07.082, vol. 85, pp. 1290–1300, 2016.

Y. Cao, Y. Wang, J. T. Riley, and W. Pan, “A novel biomass air gasification process for producing tar-free higher heating value fuel gasâ€, Fuel Process. Technol., DOI: 10.1016/j.fuproc.2005.10.003, vol. 87, pp. 343–353, 2006.

V. Kirsanovs, A. Žandeckis, and C. Rochas, “Biomass gasification thermodynamic model including tar and charâ€, Energy, vol. 14, no. 4, pp. 1321–1331, 2016.

Y. Shen and K. Yoshikawa, “Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis — A reviewâ€, Renew. Sustain. Energy Rev., DOI: 10.1016/j.rser.2012.12.062, vol. 21, pp. 371–392, 2013.

V. S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M. Z. Memon, N. Shah, E. Anthony and P. Fennell, “An overview of advances in biomass gasificationâ€, Energy Environ. Sci., DOI: 10.1039/c6ee00935b, vol. 9, no. 10, pp. 2939–2977, 2016




DOI (PDF): https://doi.org/10.20508/ijrer.v9i3.9494.g7697

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4